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Abstract

Background & Aims—High-resolution microendoscopy is an optical imaging technique with 

the potential to improve the accuracy of endoscopic screening for esophageal squamous neoplasia. 
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Although these microscopic images can readily be interpreted by trained personnel, quantitative 

image analysis software could facilitate the use of this technology in low-resource settings. In this 

study we developed and evaluated quantitative image analysis criteria for the evaluation of 

neoplastic and non-neoplastic squamous esophageal mucosa.

Methods—We performed image analysis of 177 patients undergoing standard upper endoscopy 

for screening or surveillance of esophageal squamous neoplasia, using high-resolution 

microendoscopy, at 2 hospitals in China and 1 in the United States from May 2010 to October 

2012. Biopsies were collected from imaged sites (n=375); a consensus diagnosis was provided by 

2 expert gastrointestinal pathologists and used as the standard.

Results—Quantitative information from the high-resolution images was used to develop an 

algorithm to identify high-grade squamous dysplasia or invasive squamous cell cancer, based on 

histopathology findings. Optimal performance was obtained using mean nuclear area as the basis 

for classification, resulting in sensitivities and specificities of 93% and 92% in the training set, 

87% and 97% in the test set, and 84% and 95% in an independent validation set, respectively.

Conclusions—High-resolution microendoscopy with quantitative image analysis can aid in the 

identification of esophageal squamous neoplasia. Use of software-based image guides may 

overcome issues of training and expertise in low-resource settings, allowing for widespread use of 

these optical biopsy technologies.
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Introduction

There is an urgent global need to improve early diagnosis of esophageal squamous cell 

neoplasia (ESCN).1,2 The five-year survival rate of ESCN in the United States is only 19%, 

primarily because diagnosis is often at an advanced, incurable stage.3 In low-resource 

settings, the five-year survival is much lower; for example, in Golestan Province, Iran, it is 

3.4%.4 At present, the current standard of care for endoscopic screening is Lugol’s 

chromoendoscopy (LCE) with targeted biopsy of areas that do not retain dye.5 The 

sensitivity of LCE is >95%, but specificity is poor (<65%).6,7 Areas of inflammation often 

appear indistinguishable from superficially invasive carcinoma, leading to high false 

positive rates. Confocal microendoscopy, a high-resolution imaging technique, has 

revolutionized endoscopic surveillance for neoplasia by allowing detection at the subcellular 

level.8 When confocal imaging is paired with LCE, accuracy rates have been shown to 

approach 95% with dramatic improvement in specificity.9 However, existing platforms are 

expensive ($150,000–$300,000) and available only in a handful of tertiary centers.

Thus, there remains an essential need for easily accessible, complementary high-resolution 

imaging technologies that can improve accuracy of LCE by enhancing specificity, and 

reducing the number of biopsies needed for accurate patient diagnosis. Ideally, low cost 

imaging platforms should be robust, accurate, and reproducible when used in low-resource 

settings where there is often a shortage of healthcare providers and frequent biopsies of 

suspected areas are not feasible because of the scarcity and high cost of pathology services. 
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We recently developed a fiber-optic high-resolution microendoscope (HRME) that provides 

images of the surface epithelium with similar resolution to confocal endomicroscopy, but 

with significantly reduced system complexity and cost.10 The cost-of-goods to assemble an 

HRME system is less than $3,500, including the cost of the re-usable fiber optic probe. For a 

detailed description of the HRME, see the Supplementary Materials. Recent studies 

conducted with the HRME demonstrated that sub-cellular resolution morphology can be 

used to detect neoplastic lesions in patients with Barrett’s esophagus, breast, cervical and 

oral carcinoma.11–16

HRME images can be interpreted by trained clinical personnel at the point-ofcare.15,16 

However, quantitative image analysis may provide more objective results and facilitate use 

of this technology in low-resource settings where trained personnel are not always available. 

The goal of the present study was to develop quantitative HRME image analysis criteria for 

delineation of neoplastic and non-neoplastic squamous esophageal mucosa.

Materials and Methods

Patients

Study participants previously scheduled to undergo screening for ESCN or surveillance for 

known squamous cell dysplasia underwent standard high-definition white light upper 

endoscopy (HD-WLE) with LCE. Written informed consent was obtained. The study was 

reviewed and approved by the Institutional Review Boards at The First Hospital of Jilin 

University (Changchun, China), The Cancer Institute at The Chinese Academy of Medical 

Sciences (Beijing, China), The Mount Sinai Medical Center (New York, NY), and Rice 

University (Houston, TX).

The endoscopist recorded the location, level, and clinical impression of each Lugol’s 

unstained area. Lugol’s unstained areas that were indeterminate or suspicious for neoplasia 

were further interrogated with an HRME. Prior to HRME imaging at each site, a topical 

solution (average 4.77 ml; range 1–10 ml) of 0.01% proflavine (P2508, Sigma- Aldrich, St. 

Louis, MO) in sterile phosphate buffered saline was applied to the esophageal surface using 

a spray catheter. Proflavine, which was used under an Investigational New Drug (IND) 

application from the Food and Drug Administration (IND 102 217), is a fluorescent contrast 

agent which stains cell nuclei. Proflavine absorbs light strongly at 445 nm, and it emits light 

with a peak around 510 nm. Following proflavine application, the HRME probe was inserted 

through the biopsy channel and the distal tip placed in gentle contact with the mucosa. 

Nuclei stained with proflavine were clearly visible for 5–10 minutes following application 

of proflavine. At each site between 1 and 113 video sequences of 1–3 seconds duration were 

acquired and stored as movie files so that an individual frame free of motion artifact could 

be subsequently be selected for analysis. The number of video sequences collected at a given 

site was determined by the endoscopist’s clinical judgment. The median number of video 

sequences collected per site was 4. HRME images were also obtained from two Lugol’s 

stained (“normal”) areas from each patient to determine the device’s false negative rate. At 

each site imaged, the probe was used to make a superficial dimple to “mark” the imaged 

area for biopsy. Each imaged site was biopsied and submitted for routine histologic 

diagnosis. Slides were reviewed by two expert gastrointestinal pathologists (AP, SD) 
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blinded to HD-WLE, LCE, and HRME endoscopic interpretations. Diagnosis was performed 

using standard criteria; samples were divided into the following categories: normal, 

inflammation, low-grade dysplasia (LGD), high-grade dysplasia (HGD), or cancer.17

Quality control and frame selection

Videos acquired with the HRME were reviewed for quality control (QC) by three observers 

(RRK, MP, MAP) blinded to clinical impression and pathologic diagnosis. First, one 

reviewer (MP) identified a single representative image frame with minimal motion artifact 

from each video sequence. Selected images were reviewed and those with 50% or more of 

the field of view (FOV) obscured by motion artifact, poor focus, or debris at the tip of the 

fiber bundle were excluded. At each site, a single representative image with good visual 

image quality was selected by reviewer consensus. In the case of a heterogeneous set of 

candidate images for a given site, the reviewers selected the image that appeared to 

correspond to the worst diagnosis.

Image analysis

Images were processed to extract features of potential use for classification (Figure 1). 

Images were first analyzed to exclude regions which were too dim for analysis due to 

uneven contact of the distal fiber tip with the epithelium, or saturated due to the presence of 

debris at the probe tip. Regions to be excluded were identified by applying a low-pass filter 

to highlight homogeneous regions of similar intensity and then thresholding to reject overly 

dim or saturated areas. The region of interest (ROI) was then defined as the entire field of 

view minus the excluded areas. Following ROI selection, Gaussian spatial filtering was 

applied to remove the background pattern of the HRME fiber bundle. Morphologic image 

processing and thresholding were used to segment nuclei. Once a threshold was determined 

by the histogram-based thresholding method, nuclear and cytoplasmic regions were 

separated by the threshold.

Following segmentation, the mean, standard deviation, and coefficient of variation of the 

following features were calculated for each image: nuclear size, nuclearto-cytoplasmic area 

ratio (N/C ratio), nearest internuclear distance, nuclear eccentricity, nuclear solidity, and 

major axis of the ellipse best approximating each nucleus.

All steps shown in Figure 1 (ROI selection, filtering, segmentation, and feature calculation) 

are fully automated and require 3.2 seconds processing for a single image.

Image classification

Extracted features were used to develop and evaluate an algorithm to classify whether each 

site contained neoplastic (HGD, cancer) or non-neoplastic tissue (normal, inflammation, 

LGD). The decision to draw the line between LGD and HGD was consistent with confocal 

microendoscopic classification criteria. LGD was considered non-neoplastic as it is 

associated with a low rate of progression to HGD or ESCN and is treated differently than 

HGD in a clinical setting. LGD is followed with serial endoscopies, while HGD can be 

treated with radiofrequency ablation (RFA) and/or endoscopic mucosal resection 

(EMR).17,18 Data obtained at The First University Hospital and The Mount Sinai Medical 
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Center were randomly divided into a training set to develop and optimize the algorithm, and 

an independent test set to estimate algorithm performance. Approximately 50% of the 

images were randomly assigned to the training set and 50% to the test set. Randomization 

was repeated until the proportion of neoplastic sites was approximately the same in the 

training and test sets. All images from a single patient were assigned to either the training or 

the test set. The data obtained at The Cancer Institute at The Chinese Academy of Medical 

Sciences were assigned to an independent validation set.

Two-class linear discriminant analysis was used to develop a classification algorithm. For 

details, see the Supplementary Materials. Image classification is fully automated and 

requires 0.3 seconds. Thus, the total time required to fully process and classify a single 

image is 3.5 seconds.

Results

Subject information – patients and sites

215 subjects were enrolled in the study; images with corresponding pathology results were 

available from 448 sites in 194 patients. Of these 448 sites, images from 65 sites were 

excluded due to QC issues (motion artifact, poor focus, or debris). Images from 8 sites were 

excluded because reviewers did not reach consensus on a representative image. The final 

data set for analysis consisted of images from 375 sites in 177 patients. Table 1 shows the 

histological diagnosis of measured sites in the final data set. The data obtained at The First 

University Hospital and The Mount Sinai Medical Center were randomly separated into 

training and test sets; 104 sites from 54 patients were assigned to the training set and 104 

sites from 45 patients were assigned to the test set (Table 1). The remaining data obtained at 

The Cancer Institute at The Chinese Academy of Medical Sciences were assigned to an 

independent validation set which consisted of 167 sites from 78 patients (Table 1).

Quantitative classification performance

Quantitative image features were calculated using automated image analysis. Figure 2 

illustrates bar graphs of the mean quantitative image feature values for neoplastic and non-

neoplastic tissue in the training set. P values were obtained with the Mann-Whitney U test. 

The average feature values of non-neoplastic were significantly different from those of 

neoplastic for all features.

A two-class linear discriminant algorithm was developed to separate neoplastic and non-

neoplastic tissue using each of these features. The single best performing feature was found 

to be the mean nuclear area. Figure 3(a) depicts a scatter plot of this feature for each site in 

the training set. The decision line associated with the classifier is shown as a straight line; 

the algorithm results in a sensitivity of 93% and a specificity of 92%. Figure 3(b) and 3(c) 

illustrate this feature for each site in the test and validation sets; the decision line developed 

using the training set is also shown. Applying the algorithm to the test set results in a 

sensitivity of 87% and a specificity of 97%, and applying it to the validation set results in a 

sensitivity of 84% and a specificity of 95%. Figure 4 shows the associated receiver operating 

characteristic (ROC) curves. The area under the ROC curve is 0.92 in the training set, 0.95 
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in the test set, and 0.93 in the validation set. The addition of multiple features did not 

improve performance.

Discussion

This study assessed the feasibility of quantitative analysis of HRME images for detection of 

ESCN. Using mean nuclear area, non-neoplastic and neoplastic esophageal squamous 

epithelium could be discriminated with a sensitivity of 87% and a specificity of 97% in the 

test set and 84% and 95% in the validation set compared to histopathology. For comparison, 

the sensitivity and specificity of LCE were 100% and 51% in the training set, 93% and 55% 

in the test set, and 100% and 54% in the validation set, respectively; HRME imaging is 

associated with substantially improved specificity relative to LCE. The use of quantitative 

image analysis potentially reduces the need to train endoscopists to interpret HRME images. 

Visual interpretation is subject to interand intra-observer variability which may be reduced 

with digital image analysis.19 This may prove particularly useful in low-resource settings 

where experienced personnel are limited.

Given the limitations of existing screening approaches, the high cost of current high-

resolution platforms, and the uniformly poor prognosis of invasive ESCN, there is a great 

need for more accurate and widely available technologies, particularly in low-resource 

countries with high rates of ESCN. The low specificity of endoscopic screening is a 

particular barrier in low-resource settings where pathology services are limited. For 

example, in Kenya there are approximately 40 pathologists in the country and the majority 

practice in Nairobi.20 Moreover, in low-resource settings the cost of getting one biopsy 

processed and read is often greater than the cost of an endoscopic examination; for example, 

at Tenwek hospital in Kenya, these costs are $35 and $25, respectively. Thus, a robust, low-

cost method of detecting squamous cell neoplasia at an early, resectable stage with fewer 

biopsies could markedly improve existing endoscopic screening, surveillance and treatment. 

In the validation set reported here, 68 of 87 positive findings by LCE were falsely positive 

by histology; the improved specificity of HRME imaging could reduce the large number of 

false positives.

While not a commercial product, the $3,500 cost-of-goods of the HRME system suggests it 

could be affordable for use in low-resource settings. Over the 29 month duration of this 

study, five HRME systems were used without need for on-site technical support or 

maintenance. The HRME fiber optic probe is reusable; the only maintenance required is 

polishing the fiber bundle which was performed on site after the probe had been used for 

60–75 procedures. The cost of proflavine was less than 1 penny per procedure. The HRME 

must be used in conjunction with endoscopy, but new LED-based endoscopes that reduce 

the cost by more than 2/3 of current systems are being introduced commercially in China.21

The contrast agent proflavine is an acriflavine derivative that has a long history of safe use 

as a topical antiseptic, and has been used for fluorescence imaging in Europe, Asia and 

Australia with no reports of adverse events. In our experience of >300 subjects imaged to 

date with proflavine, no adverse events were noted.
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The strengths of this study include the fact that it was a multi-center, international, in vivo 

study with data from the first two clinical sites randomized to a training set for algorithm 

development and a separate test set to evaluate the performance of the algorithm relative to 

the standard of histopathology. In addition, performance of the algorithm was assessed in an 

independent validation set acquired in a different clinical setting than the training and test 

sets.

A limitation of this study is that image analysis was not performed in real time; instead, 

images were analyzed post-hoc, following acquisition. Two technical limitations currently 

prevent real-time analysis. (1) Quality control and frame selection are currently performed 

manually after the imaging session has been completed. With recent advances in automated 

quality control and frame selection we will now be able to perform these functions 

automatically within 1 minute of data collection, enabling “near real-time” analysis during 

the imaging session. (2) The current algorithm requires 3.5 seconds to process and classify 

an image, which does not permit real-time processing at 15 frames/second. Further 

improvements in processing speed may enable live display with automated frame-by-frame 

analysis.

Alternatively, the algorithm developed here could be used to enable computer assisted visual 

image analysis. Figure 5 shows an example of how results of the image analysis presented 

here can guide development of visual image interpretation guidelines to assist endoscopists 

in classifying HRME images. Mean nuclear area was found to be the best performing image 

feature, with samples classified as neoplastic if mean nuclear area exceeds 180 µm2 (Fig. 

3a); this corresponds to a mean nuclear diameter of 15.1 µm assuming circular nuclei. As a 

simple way to extend this approach to visual image interpretation, we added a row of 15.1 

µm diameter dots to the top of each HRME image; in addition, we superimposed a grid with 

lines spaced 19.4 µm apart to facilitate estimation of nuclear size across the image. 

Observers are presented an image with the dots and grid superimposed and asked to visually 

assess whether most nuclei are larger than 15.1 µm in diameter; if so, then the site is 

diagnosed as neoplastic. The visual image interpretation guide is now embedded in the 

HRME imaging software and superimposed on an image window to assist clinicians in 

identifying neoplastic lesions in real-time at the time of endoscopy.

In this study, a representative image for each site was selected manually by reviewer 

consensus. While we did not attempt to quantify the heterogeneity of images from a given 

site in this analysis, we note that more heterogeneity was observed in images from unstained 

lesions that were in fact positive by histopathology than from unstained lesions that were 

negative by histopathology.

While preliminary, the high accuracy and specificity of quantitative analysis of HRME 

images demonstrated here suggest that this technique could potentially be used to more 

accurately and selectively target biopsy location. The ability to analyze images 

quantitatively may increase utilization of such a technology, particularly in rural or 

community-based settings with limited access to trained clinicians. Additionally, because of 

improved specificity, such a technology may reduce the number of biopsies needed for 

accurate patient diagnosis in low-resource settings where pathology processing and reading 
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costs are a disproportionately large component of the total cost of patient evaluation and 

diagnosis and there may be limited access to standard histologic analysis. Lastly, the ability 

to delineate normal from neoplastic mucosa in real-time, if this can be achieved, may 

enhance endoscopic margin detection, enabling greater accuracy for complete resection by 

minimally-invasive endoscopic therapies such as EMR and RFA, a less costly and less 

morbid alternative to surgical esophagectomy.22 The ability of endoscopists to interpret the 

HRME images in real time with the assistance of the image analysis for ESCN is being 

studied in a prospective, international, multi-center trial.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

EMR endoscopic mucosal resection

ESCN esophageal squamous cell neoplasia

FOV field of view

HGD high-grade dysplasia

HRME high-resolution microendoscope

HD-WLE high-definition white light upper endoscopy

IND Investigational New Drug

LCE Lugol’s chromoendoscopy

LGD low-grade dysplasia

N/C ratio nuclear-to-cytoplasmic area ratio

QC quality control

RFA radiofrequency ablation

ROC receiver operating characteristic

ROI region of interest
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Figure 1. 
Quantitative image analysis process. 1) An ROI (a) is selected automatically, excluding 

image regions which are saturated (b) or too dim (c). 2) Fiber pattern is removed using 

Gaussian filtering. 3) Nuclei are segmented. 4) Quantitative image features are calculated 

(e.g. nearest internuclear distance).
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Figure 2. 
Bar graphs indicating mean values of six quantitative image features (± one std. dev) for 

non-neoplastic and neoplastic sites in the training set. P-values were obtained using the 

Mann-Whitney U test.
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Figure 3. 
(a) Scatter plot of mean nuclear area for each measured site in the training set. The decision 

line which classifies sites as neoplastic or non-neoplastic with maximum accuracy is shown. 

(b) Scatter plot of mean nuclear area for each measured site in the test set. (c) Scatter plot of 

mean nuclear area for each measured site in the validation set. The decision line to classify 

sites as neoplastic or not using the training set is shown.
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Figure 4. 
ROC curves for linear discriminant analysis algorithm based on the single feature of mean 

nuclear area applied to data in (a) the training set, (b) the test set, and (c) the validation. The 

Q-points correspond to a sensitivity of 93% and a specificity of 92% in the training set (a), 

87% and 97% in the test set (b), and 84% and 95% in the validation set (c).
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Figure 5. 
Flow chart illustrating visually-guided image analysis algorithm. A row of 15.1 µm diameter 

reference dots was added to the top of each HRME image; in addition, a grid with lines 

spaced 19.4 µm apart was superimposed to facilitate estimation of nuclear size across the 

image. Each 15.1 µm diameter reference dot occupies approximately half the area of a single 

square in the grid. If most nuclei appear smaller than the 15.1 µm diameter reference dots, 

then the image is classified as non-neoplastic; otherwise it is classified as neoplastic.
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