246 research outputs found

    Performance of Machine Learning and Big Data Analytics paradigms in Cybersecurity and Cloud Computing Platforms

    Get PDF
    The purpose of the research is to evaluate Machine Learning and Big Data Analytics paradigms for use in Cybersecurity. Cybersecurity refers to a combination of technologies, processes and operations that are framed to protect information systems, computers, devices, programs, data and networks from internal or external threats, harm, damage, attacks or unauthorized access. The main characteristic of Machine Learning (ML) is the automatic data analysis of large data sets and production of models for the general relationships found among data. ML algorithms, as part of Artificial Intelligence, can be clustered into supervised, unsupervised, semi-supervised, and reinforcement learning algorithms

    Machine Learning Defence Mechanism for Securing the Cloud Environment

    Get PDF
    A computer paradigm known as ”cloud computing” offers end users on-demand, scalable, and measurable services. Today’s businesses rely heavily on computer technology for a variety of reasons, including cost savings, infrastructure, development platforms, data processing, data analytics, etc. The end users can access the cloud service providers’ (CSP) services from any location at any time using a web application. The protection of the cloud infrastructure is of the highest  significance, and several studies using a variety of technologies have been conducted to develop more effective defenses against cloud threats. In recent years, machine learning technology has shown to be more effective in securing the cloud environment. In recent years, machine learning technology has shown to be more effective in securing the cloud environment. To create models that can automate the process of identifying cloud threats with better accuracy than any other technology, machine learning algorithms are  trained  on  a  variety  of  real-world  datasets. In this study, various recent research publications that used machine learning as a defense mechanism against cloud threats are reviewed

    Unsupervised Anomaly-based Malware Detection using Hardware Features

    Get PDF
    Recent works have shown promise in using microarchitectural execution patterns to detect malware programs. These detectors belong to a class of detectors known as signature-based detectors as they catch malware by comparing a program's execution pattern (signature) to execution patterns of known malware programs. In this work, we propose a new class of detectors - anomaly-based hardware malware detectors - that do not require signatures for malware detection, and thus can catch a wider range of malware including potentially novel ones. We use unsupervised machine learning to build profiles of normal program execution based on data from performance counters, and use these profiles to detect significant deviations in program behavior that occur as a result of malware exploitation. We show that real-world exploitation of popular programs such as IE and Adobe PDF Reader on a Windows/x86 platform can be detected with nearly perfect certainty. We also examine the limits and challenges in implementing this approach in face of a sophisticated adversary attempting to evade anomaly-based detection. The proposed detector is complementary to previously proposed signature-based detectors and can be used together to improve security.Comment: 1 page, Latex; added description for feature selection in Section 4, results unchange

    A Survey on Enterprise Network Security: Asset Behavioral Monitoring and Distributed Attack Detection

    Full text link
    Enterprise networks that host valuable assets and services are popular and frequent targets of distributed network attacks. In order to cope with the ever-increasing threats, industrial and research communities develop systems and methods to monitor the behaviors of their assets and protect them from critical attacks. In this paper, we systematically survey related research articles and industrial systems to highlight the current status of this arms race in enterprise network security. First, we discuss the taxonomy of distributed network attacks on enterprise assets, including distributed denial-of-service (DDoS) and reconnaissance attacks. Second, we review existing methods in monitoring and classifying network behavior of enterprise hosts to verify their benign activities and isolate potential anomalies. Third, state-of-the-art detection methods for distributed network attacks sourced from external attackers are elaborated, highlighting their merits and bottlenecks. Fourth, as programmable networks and machine learning (ML) techniques are increasingly becoming adopted by the community, their current applications in network security are discussed. Finally, we highlight several research gaps on enterprise network security to inspire future research.Comment: Journal paper submitted to Elseive

    Studying a Virtual Testbed for Unverified Data

    Get PDF
    It is difficult to fully know the effects a piece of software will have on your computer, particularly when the software is distributed by an unknown source. The research in this paper focuses on malware detection, virtualization, and sandbox/honeypot techniques with the goal of improving the security of installing useful, but unverifiable, software. With a combination of these techniques, it should be possible to install software in an environment where it cannot harm a machine, but can be tested to determine its safety. Testing for malware, performance, network connectivity, memory usage, and interoperability can be accomplished without allowing the program to access the base operating system of a machine. After the full effects of the software are understood and it is determined to be safe, it could then be run from, and given access to, the base operating system. This thesis investigates the feasibility of creating a system to verify the security of unknown software while ensuring it will have no negative impact on the host machine

    Theoretical and Applied Foundations for Intrusion Detection in Single and Federated Clouds

    Get PDF
    Les systèmes infonuagiques deviennent de plus en plus complexes, plus dynamiques et hétérogènes. Un tel environnement produit souvent des données complexes et bruitées, empêchant les systèmes de détection d’intrusion (IDS) de détecter des variantes d’attaques connues. Une seule intrusion ou une attaque dans un tel système hétérogène peut se présenter sous des formes différentes, logiquement mais non synthétiquement similaires. Les IDS traditionnels sont incapables d’identifier ces attaques, car ils sont conçus pour des infrastructures spécifiques et limitées. Par conséquent, une détection précise dans le nuage ne sera absolument pas identifiée. Outre le problème de l’infonuagique, les cyber-attaques sont de plus en plus sophistiquées et difficiles à détecter. Il est donc extrêmement compliqué pour un unique IDS d’un nuage de détecter toutes les attaques, en raison de leurs implications, et leurs connaissances limitées et insuffisantes de celles-ci. Les solutions IDS actuelles de l’infonuagique résident dans le fait qu’elles ne tiennent pas compte des aspects dynamiques et hétérogènes de l’infonuagique. En outre, elles s’appuient fondamentalement sur les connaissances et l’expérience locales pour identifier les attaques et les modèles existants. Cela rend le nuage vulnérable aux attaques «Zero-Day». À cette fin, nous résolvons dans cette thèse deux défis associés à l’IDS de l’infonuagique : la détection des cyberattaques dans des environnements complexes, dynamiques et hétérogènes, et la détection des cyberattaques ayant des informations limitées et/ou incomplètes sur les intrusions et leurs conséquences. Dans cette thèse, nous sommes intéressés aux IDS génériques de l’infonuagique afin d’identifier les intrusions qui sont indépendantes de l’infrastructure utilisée. Par conséquent, à chaque fois qu’un pressentiment d’attaque est identifié, le système de détection d’intrusion doit être capable de reconnaître toutes les variantes d’une telle attaque, quelle que soit l’infrastructure utilisée. De plus, les IDS de l’infonuagique coopèrent et échangent des informations afin de faire bénéficier chacun des expertises des autres, pour identifier des modèles d’attaques inconnues.----------ABSTRACT: Cloud Computing systems are becoming more and more complex, dynamic and heterogeneous. Such an environment frequently produces complex and noisy data that make Intrusion Detection Systems (IDSs) unable to detect unknown variants of known attacks. A single intrusion or an attack in such a heterogeneous system could take various forms that are logically but not synthetically similar. This, in turn, makes traditional IDSs unable to identify these attacks, since they are designed for specific and limited infrastructures. Therefore, the accuracy of the detection in the cloud will be very negatively affected. In addition to the problem of the cloud computing environment, cyber attacks are getting more sophisticated and harder to detect. Thus, it is becoming increasingly difficult for a single cloud-based IDS to detect all attacks, because of limited and incomplete knowledge about attacks and implications. The problem of the existing cloud-based IDS solutions is that they overlook the dynamic and changing nature of the cloud. Moreover, they are fundamentally based on the local knowledge and experience to perform the classification of attacks and normal patterns. This renders the cloud vulnerable to “Zero-Day” attacks. To this end, we address throughout this thesis two challenges associated with the cloud-based IDS which are: the detection of cyber attacks under complex, dynamic and heterogeneous environments; and the detection of cyber attacks under limited and/or incomplete information about intrusions and implications. We are interested in this thesis in allowing cloud-based IDSs to be generic, in order to identify intrusions regardless of the infrastructure used. Therefore, whenever an intrusion has been identified, an IDS should be able to recognize all the different structures of such an attack, regardless of the infrastructure that is being used. Moreover, we are interested in allowing cloud-based IDSs to cooperate and share knowledge with each other, in order to make them benefit from each other’s expertise to cover unknown attack patterns. The originality of this thesis lies within two aspects: 1) the design of a generic cloud-based IDS that allows the detection under changing and heterogeneous environments and 2) the design of a multi-cloud cooperative IDS that ensures trustworthiness, fairness and sustainability. By trustworthiness, we mean that the cloud-based IDS should be able to ensure that it will consult, cooperate and share knowledge with trusted parties (i.e., cloud-based IDSs). By fairness, we mean that the cloud-based IDS should be able to guarantee that mutual benefits will be achieved through minimising the chance of cooperating with selfish IDSs. This is useful to give IDSs the motivation to participate in the community

    An adaptive and distributed intrusion detection scheme for cloud computing

    Get PDF
    Cloud computing has enormous potentials but still suffers from numerous security issues. Hence, there is a need to safeguard the cloud resources to ensure the security of clients’ data in the cloud. Existing cloud Intrusion Detection System (IDS) suffers from poor detection accuracy due to the dynamic nature of cloud as well as frequent Virtual Machine (VM) migration causing network traffic pattern to undergo changes. This necessitates an adaptive IDS capable of coping with the dynamic network traffic pattern. Therefore, the research developed an adaptive cloud intrusion detection scheme that uses Binary Segmentation change point detection algorithm to track the changes in the normal profile of cloud network traffic and updates the IDS Reference Model when change is detected. Besides, the research addressed the issue of poor detection accuracy due to insignificant features and coordinated attacks such as Distributed Denial of Service (DDoS). The insignificant feature was addressed using feature selection while coordinated attack was addressed using distributed IDS. Ant Colony Optimization and correlation based feature selection were used for feature selection. Meanwhile, distributed Stochastic Gradient Decent and Support Vector Machine (SGD-SVM) were used for the distributed IDS. The distributed IDS comprised detection units and aggregation unit. The detection units detected the attacks using distributed SGD-SVM to create Local Reference Model (LRM) on various computer nodes. Then, the LRM was sent to aggregation units to create a Global Reference Model. This Adaptive and Distributed scheme was evaluated using two datasets: a simulated datasets collected using Virtual Machine Ware (VMWare) hypervisor and Network Security Laboratory-Knowledge Discovery Database (NSLKDD) benchmark intrusion detection datasets. To ensure that the scheme can cope with the dynamic nature of VM migration in cloud, performance evaluation was performed before and during the VM migration scenario. The evaluation results of the adaptive and distributed scheme on simulated datasets showed that before VM migration, an overall classification accuracy of 99.4% was achieved by the scheme while a related scheme achieved an accuracy of 83.4%. During VM migration scenario, classification accuracy of 99.1% was achieved by the scheme while the related scheme achieved an accuracy of 85%. The scheme achieved an accuracy of 99.6% when it was applied to NSL-KDD dataset while the related scheme achieved an accuracy of 83%. The performance comparisons with a related scheme showed that the developed adaptive and distributed scheme achieved superior performance

    Trends on Computer Security: Cryptography, User Authentication, Denial of Service and Intrusion Detection

    Get PDF
    The new generation of security threats has beenpromoted by digital currencies and real-time applications, whereall users develop new ways to communicate on the Internet.Security has evolved in the need of privacy and anonymity forall users and his portable devices. New technologies in everyfield prove that users need security features integrated into theircommunication applications, parallel systems for mobile devices,internet, and identity management. This review presents the keyconcepts of the main areas in computer security and how it hasevolved in the last years. This work focuses on cryptography,user authentication, denial of service attacks, intrusion detectionand firewalls
    • …
    corecore