5 research outputs found

    Quantifying Variation in Gait Features from Wearable Inertial Sensors Using Mixed Effects Models

    Get PDF
    The emerging technology of wearable inertial sensors has shown its advantages in collecting continuous longitudinal gait data outside laboratories. This freedom also presents challenges in collecting high-fidelity gait data. In the free-living environment, without constant supervision from researchers, sensor-based gait features are susceptible to variation from confounding factors such as gait speed and mounting uncertainty, which are challenging to control or estimate. This paper is one of the first attempts in the field to tackle such challenges using statistical modeling. By accepting the uncertainties and variation associated with wearable sensor-based gait data, we shift our efforts from detecting and correcting those variations to modeling them statistically. From gait data collected on one healthy, non-elderly subject during 48 full-factorial trials, we identified four major sources of variation, and quantified their impact on one gait outcome—range per cycle—using a random effects model and a fixed effects model. The methodology developed in this paper lays the groundwork for a statistical framework to account for sources of variation in wearable gait data, thus facilitating informative statistical inference for free-living gait analysis

    Innovations in courts: Validation of a scale of technological innovation

    Get PDF
    The development of studies on technological innovations in the public sector, specifically in justice system, is still little explored in the literature. This article aimed to develop and validate a scale of technological innovation in the justice system during the period of the COVID-19 pandemic. Data collection procedures were carried out by means of questionnaires sent to 20.727 e-mails of civil servants and judges of the state courts of justice in Brazil. The relationships among the innovation variables that make up the technological innovation construct in the Brazilian judiciary were studied. The factor analyses resulted in the main factors listed by the respondents, as the innovative trend factor (IT); technological resources factor (TR); governance factor and its evidence (G); and innovation and technology factor (IT). For responses to the studies, descriptive statistical analysis was performed, and the innovative sensitivity and technological integration variables presented greater commonalities, and the two factors extracted explain 74% and 67% of the variance. After the descriptive statistical treatment, the confidence level was 99% and the error margin was 4.87%, resulting in a sample of 679 respondents

    Technological advancements in the analysis of human motion and posture management through digital devices

    Get PDF
    Technological development of motion and posture analyses is rapidly progressing, especially in rehabilitation settings and sport biomechanics. Consequently, clear discrimination among different measurement systems is required to diversify their use as needed. This review aims to resume the currently used motion and posture analysis systems, clarify and suggest the appropriate approaches suitable for specific cases or contexts. The currently gold standard systems of motion analysis, widely used in clinical settings, present several limitations related to marker placement or long procedure time. Fully automated and markerless systems are overcoming these drawbacks for conducting biomechanical studies, especially outside laboratories. Similarly, new posture analysis techniques are emerging, often driven by the need for fast and non-invasive methods to obtain high-precision results. These new technologies have also become effective for children or adolescents with non-specific back pain and postural insufficiencies. The evolutions of these methods aim to standardize measurements and provide manageable tools in clinical practice for the early diagnosis of musculoskeletal pathologies and to monitor daily improvements of each patient. Herein, these devices and their uses are described, providing researchers, clinicians, orthopedics, physical therapists, and sports coaches an effective guide to use new technologies in their practice as instruments of diagnosis, therapy, and prevention

    Quantifying Variation in Gait Features from Wearable Inertial Sensors Using Mixed Effects Models

    Get PDF
    The emerging technology of wearable inertial sensors has shown its advantages in collecting continuous longitudinal gait data outside laboratories. This freedom also presents challenges in collecting high-fidelity gait data. In the free-living environment, without constant supervision from researchers, sensor-based gait features are susceptible to variation from confounding factors such as gait speed and mounting uncertainty, which are challenging to control or estimate. This paper is one of the first attempts in the field to tackle such challenges using statistical modeling. By accepting the uncertainties and variation associated with wearable sensor-based gait data, we shift our efforts from detecting and correcting those variations to modeling them statistically. From gait data collected on one healthy, non-elderly subject during 48 full-factorial trials, we identified four major sources of variation, and quantified their impact on one gait outcome—range per cycle—using a random effects model and a fixed effects model. The methodology developed in this paper lays the groundwork for a statistical framework to account for sources of variation in wearable gait data, thus facilitating informative statistical inference for free-living gait analysis
    corecore