642 research outputs found

    Teleportation as a Depolarizing Quantum Channel, Relative Entropy and Classical Capacity

    Get PDF
    We show that standard teleportation with an arbitrary mixed state resource is equivalent to a generalized depolarizing channel with probabilities given by the maximally entangled components of the resource. This enables the usage of any quantum channel as a generalized depolarizing channel without additional twirling operations. It also provides a nontrivial upper bound on the entanglement of a class of mixed states. Our result allows a consistent and statistically motivated quantification of teleportation success in terms of the relative entropy and this quantification can be related to a classical capacity.Comment: Version published in Phys. Rev. Let

    Unitarily localizable entanglement of Gaussian states

    Full text link
    We consider generic m×nm\times n-mode bipartitions of continuous variable systems, and study the associated bisymmetric multimode Gaussian states. They are defined as (m+n)(m+n)-mode Gaussian states invariant under local mode permutations on the mm-mode and nn-mode subsystems. We prove that such states are equivalent, under local unitary transformations, to the tensor product of a two-mode state and of m+n−2m+n-2 uncorrelated single-mode states. The entanglement between the mm-mode and the nn-mode blocks can then be completely concentrated on a single pair of modes by means of local unitary operations alone. This result allows to prove that the PPT (positivity of the partial transpose) condition is necessary and sufficient for the separability of (m+n)(m + n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number of modes.Comment: 10 pages, 2 figure

    Entanglement Cost of Nonlocal Measurements

    Full text link
    For certain joint measurements on a pair of spatially separated particles, we ask how much entanglement is needed to carry out the measurement exactly. For a class of orthogonal measurements on two qubits with partially entangled eigenstates, we present upper and lower bounds on the entanglement cost. The upper bound is based on a recent result by D. Berry [Phys. Rev. A 75, 032349 (2007)]. The lower bound, based on the entanglement production capacity of the measurement, implies that for almost all measurements in the class we consider, the entanglement required to perform the measurement is strictly greater than the average entanglement of its eigenstates. On the other hand, we show that for any complete measurement in d x d dimensions that is invariant under all local Pauli operations, the cost of the measurement is exactly equal to the average entanglement of the states associated with the outcomes.Comment: 14 pages; new result in v4: cost of an arbitrary measurement invariant under local Pauli operation

    Entanglement in continuous variable systems: Recent advances and current perspectives

    Get PDF
    We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures, and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization, and the scaling of bipartite entanglement in multimode Gaussian states. We then discuss recent advances in the understanding of entanglement sharing in multimode Gaussian states, including the proof of the monogamy inequality of distributed entanglement for all Gaussian states, and its consequences for the characterization of multipartite entanglement. We finally review recent advances and discuss possible perspectives on the qualification and quantification of entanglement in non Gaussian states, a field of research that is to a large extent yet to be explored.Comment: 61 pages, 7 figures, 3 tables; Published as Topical Review in J. Phys. A, Special Issue on Quantum Information, Communication, Computation and Cryptography (v3: few typos corrected
    • 

    corecore