427 research outputs found

    Comparison Data Traffic Scheduling Techniques for Classifying QoS over 5G Mobile Networks

    Get PDF
    Enhancing Quality of Service (QoS) in mobile networks is the key aim for mobile operators. Mobile networks transport several forms of data traffic for real-time applications (i.e., video monitoring). These applications need to get the advantage of QoS adaptation. Numerous scheduling techniques are utilized at the router to assure the QoS of the mobile networks. Upcoming 5G mobile networks will be launched; hence, Human-Type-Communication (HTC) and Machine-to-Machine (M2M) data traffic are expected to increase dramatically over mobile networks, which results in growing the capacity and raising high data rates. These networks are expected to face challenges in cases of Radio Access Network (RAN) overload and congestion due to the massive smart devices data traffic with various QoS requirements. This paper presents a comparison for data traffic scheduling techniques, which are Priority Queuing (PQ), First-In-First-Out (FIFO) and Weighted Fair Queuing (WFQ). We consider to select a suitable data traffic scheduling technique in terms of QoS provisioning and helping 5G network, also we propose models and algorithms for efficiently utilized the smallest unit of a RAN in a relay node by aggregating and slicing the data traffic of several M2M devices

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    ExPECA: An Experimental Platform for Trustworthy Edge Computing Applications

    Full text link
    This paper presents ExPECA, an edge computing and wireless communication research testbed designed to tackle two pressing challenges: comprehensive end-to-end experimentation and high levels of experimental reproducibility. Leveraging OpenStack-based Chameleon Infrastructure (CHI) framework for its proven flexibility and ease of operation, ExPECA is located in a unique, isolated underground facility, providing a highly controlled setting for wireless experiments. The testbed is engineered to facilitate integrated studies of both communication and computation, offering a diverse array of Software-Defined Radios (SDR) and Commercial Off-The-Shelf (COTS) wireless and wired links, as well as containerized computational environments. We exemplify the experimental possibilities of the testbed using OpenRTiST, a latency-sensitive, bandwidth-intensive application, and analyze its performance. Lastly, we highlight an array of research domains and experimental setups that stand to gain from ExPECA's features, including closed-loop applications and time-sensitive networking

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions
    corecore