17,988 research outputs found

    Quality-Aware Analysis in Product Line Engineering with the Orthogonal Variability Model

    Get PDF
    Software product line engineering (SPLE) is about producing a set of similar products in a certain domain. A variability model documents the variability amongst products in a product line. The specification of variability can be extended with quality information, such as measurable quality attributes (e.g., CPU and memory consumption) and constraints on these attributes (e.g., memory consumption should be in a range of values). However, the wrong use of constraints may cause anomalies in the specification which must be detected (e.g., the model could represent no products). Furthermore, based on such quality information it is possible to carry out quality-aware analyses, i.e., the product line engineer may want to verify whether it is possible to build a product that satisfies a desired quality. The challenge for quality-aware specification and analysis is three-fold. First, there should be a way to specify quality information in variability models. Second, it should be possible to detect anomalies in the variability specification associated with quality information. Third, there should be mechanisms to verify the variability model to extract useful information, such as the possibility to build a product that fulfils certain quality conditions (e.g., is there any product that requires less than 512MB of memory?). In this article, we present an approach for quality-aware analysis in software product lines using the orthogonal variability model (OVM) to represent variability. We propose to map variability represented in the OVM associated with quality information to a constraint satisfaction problem and to use an off-the-shelf constraint programming solver to automatically perform the verification task. To illustrate our approach, we use a product line in the automotive domain which is an example that was created in a national project by a leading car company. We have developed a prototype tool named FaMa-OVM, which works as a proof of concepts. We were able to identify void models, dead and false optional elements, and check whether the product line example satisfies quality conditions

    Defining and validating a multimodel approach for product architecture derivation and improvement

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-41533-3_24Software architectures are the key to achieving the non-functional requirements (NFRs) in any software project. In software product line (SPL) development, it is crucial to identify whether the NFRs for a specific product can be attained with the built-in architectural variation mechanisms of the product line architecture, or whether additional architectural transformations are required. This paper presents a multimodel approach for quality-driven product architecture derivation and improvement (QuaDAI). A controlled experiment is also presented with the objective of comparing the effectiveness, efficiency, perceived ease of use, intention to use and perceived usefulness with regard to participants using QuaDAI as opposed to the Architecture Tradeoff Analysis Method (ATAM). The results show that QuaDAI is more efficient and perceived as easier to use than ATAM, from the perspective of novice software architecture evaluators. However, the other variables were not found to be statistically significant. Further replications are needed to obtain more conclusive results.This research is supported by the MULTIPLE project (MICINN TIN2009-13838) and the Vali+D fellowship program (ACIF/2011/235).González Huerta, J.; Insfrán Pelozo, CE.; Abrahao Gonzales, SM. (2013). Defining and validating a multimodel approach for product architecture derivation and improvement. En Model-Driven Engineering Languages and Systems. Springer. 388-404. https://doi.org/10.1007/978-3-642-41533-3_24S388404Ali-Babar, M., Lago, P., Van Deursen, A.: Empirical research in software architecture: opportunities, challenges, and approaches. Empirical Software Engineering 16(5), 539–543 (2011)Ali-Babar, M., Zhu, L., Jeffery, R.: A Framework for Classifying and Comparing Software Architecture Evaluation Methods. In: 15th Australian Software Engineering Conference, Melbourne, Australia, pp. 309–318 (2004)Basili, V.R., Rombach, H.D.: The TAME project: towards improvement-oriented software environments. IEEE Transactions on Software Engineering 14(6), 758–773 (1988)Barkmeyer, E.J., Feeney, A.B., Denno, P., Flater, D.W., Libes, D.E., Steves, M.P., Wallace, E.K.: Concepts for Automating Systems Integration NISTIR 6928. National Institute of Standards and Technology, U.S. Dept. of Commerce (2003)Bosch, J.: Design and Use of Software Architectures. Adopting and Evolving Product-Line Approach. Addison-Wesley, Harlow (2000)Botterweck, G., O’Brien, L., Thiel, S.: Model-driven derivation of product architectures. In: 22th Int. Conf. on Automated Software Engineering, New York, USA, pp. 469–472 (2007)Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented software architecture, vol. 1: A System of Patterns. Wiley (1996)Cabello, M.E., Ramos, I., Gómez, A., Limón, R.: Baseline-Oriented Modeling: An MDA Approach Based on Software Product Lines for the Expert Systems Development. In: 1st Asia Conference on Intelligent Information and Database Systems, Vietnam (2009)Carifio, J., Perla, R.J.: Ten Common Misunderstandings, Misconceptions, Persistent Myths and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes. Journal of Social Sciences 3(3), 106–116 (2007)Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley, Boston (2007)Czarnecki, K., Kim, C.H.: Cardinality-based feature modeling and constraints: A progress report. In: Int. Workshop on Software Factories, San Diego-CA (2005)Datorro, J.: Convex Optimization & Euclidean Distance Geometry. Meboo Publishing (2005)Davis, F.D.: Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly 13(3), 319–340 (1989)Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems. Addison-Wesley, Boston (2002)Feiler, P.H., Gluch, D.P., Hudak, J.: The Architecture Analysis & Design Language (AADL): An Introduction. Tech. Report CMU/SEI-2006-TN-011. SEI, Carnegie Mellon University (2006)Gómez, A., Ramos, I.: Cardinality-based feature modeling and model-driven engineering: Fitting them together. In: 4th Int. Workshop on Variability Modeling of Software Intensive Systems, Linz, Austria (2010)Gonzalez-Huerta, J., Insfran, E., Abrahao, S.: A Multimodel for Integrating Quality Assessment in Model-Driven Engineering. In: 8th International Conference on the Quality of Information and Communications Technology (QUATIC 2012), Lisbon, Portugal, September 3-6 (2012)Gonzalez-Huerta, J., Insfran, E., Abrahao, S., McGregor, J.D.: Non-functional Requirements in Model-Driven Software Product Line Engineering. In: 4th Int. Workshop on Non-functional System Properties in Domain Specific Modeling Languages, Insbruck, Austria (2012)Guana, V., Correal, V.: Variability quality evaluation on component-based software product lines. In: 15th Int. Software Product Line Conference, Munich, Germany, vol. 2, pp. 19.1–19.8 (2011)Insfrán, E., Abrahão, S., González-Huerta, J., McGregor, J.D., Ramos, I.: A Multimodeling Approach for Quality-Driven Architecture Derivation. In: 21st Int. Conf. on Information Systems Development (ISD 2012), Prato, Italy (2012)ISO/IEC 25000:2005, Software Engineering. Software product Quality Requirements and Evaluation SQuaRE (2005)Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation (CMU/SEI-2000-TR-004, ADA382629). Software Engineering Institute, Carnegie Mellon University, Pittsburgh (2000), http://www.sei.cmu.edu/publications/documents/00.reports/00tr004.htmlKim, T., Ko, I., Kang, S., Lee, D.: Extending ATAM to assess product line architecture. In: 8th IEEE Int. Conference on Computer and Information Technology, Sydney, Australia, pp. 790–797 (2008)Kitchenham, B.A., Pfleeger, S.L., Hoaglin, D.C., Rosenber, J.: Preliminary Guidelines for Empirical Research in Software Engineering. IEEE Transactions on Software Engineering 28(8) (2002)Kruchten, P.B.: The Rational Unified Process: An Introduction. Addison-Wesley (1999)Martensson, F.: Software Architecture Quality Evaluation. Approaches in an Industrial Context. Ph. D. thesis, Blekinge Institute of Technology, Karlskrona, Sweden (2006)Maxwell, K.: Applied Statistics for Software Managers. Software Quality Institute Series. Prentice-Hall (2002)Olumofin, F.G., Mišic, V.B.: A holistic architecture assessment method for software product lines. Information and Software Technology 49, 309–323 (2007)Perovich, D., Rossel, P.O., Bastarrica, M.C.: Feature model to product architectures: Applying MDE to Software Product Lines. In: IEEE/IFIP & European Conference on Software Architecture, Helsinki, Findland, pp. 201–210 (2009)Robertson, S., Robertson, J.: Mastering the requirements process. ACM Press, New York (1999)Roos-Frantz, F., Benavides, D., Ruiz-Cortés, A., Heuer, A., Lauenroth, K.: Quality-aware analysis in product line engineering with the orthogonal variability model. Software Quality Journal (2011), doi:10.1007/s11219-011-9156-5Saaty, T.L.: The Analytical Hierarchical Process. McGraw- Hill, New York (1990)Taher, L., Khatib, H.E., Basha, R.: A framework and QoS matchmaking algorithm for dynamic web services selection. In: 2nd Int. Conference on Innovations in Information Technology, Dubai, UAE (2005)Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Weslen, A.: Experimentation in Software Engineering - An Introduction. Kluwer (2000

    Variability and Evolution in Systems of Systems

    Full text link
    In this position paper (1) we discuss two particular aspects of Systems of Systems, i.e., variability and evolution. (2) We argue that concepts from Product Line Engineering and Software Evolution are relevant to Systems of Systems Engineering. (3) Conversely, concepts from Systems of Systems Engineering can be helpful in Product Line Engineering and Software Evolution. Hence, we argue that an exchange of concepts between the disciplines would be beneficial.Comment: In Proceedings AiSoS 2013, arXiv:1311.319

    Modeling used for Software Product Line Engineering

    Get PDF
    Software product line is the separation of variant features of all the products which belong to same line. Modeling is the basic foundation of Software Product Line Engineering, that is used for collection of what is similar and what is different between products, but products of same line. Here Line means a set of products those are related and share some commonalities like data structures, software components, some features and architecture etc.In order to managing the variability and commonalties in product line we use modeling in Software product line.So that SPLE is the most powerful approach to which we can use for to increase the efficiency of the software engineering process and we can develop variety of software from a single software product line, that’s why if we implement low design that can ripple through many generated software systems.In this paper I represent the relationship between Orthogonal Variability model and various different qualities attributes affecting them., I will also describe some existing metrics which we use to measure these quality attributes

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose

    Automated analysis of feature models: Quo vadis?

    Get PDF
    Feature models have been used since the 90's to describe software product lines as a way of reusing common parts in a family of software systems. In 2010, a systematic literature review was published summarizing the advances and settling the basis of the area of Automated Analysis of Feature Models (AAFM). From then on, different studies have applied the AAFM in different domains. In this paper, we provide an overview of the evolution of this field since 2010 by performing a systematic mapping study considering 423 primary sources. We found six different variability facets where the AAFM is being applied that define the tendencies: product configuration and derivation; testing and evolution; reverse engineering; multi-model variability-analysis; variability modelling and variability-intensive systems. We also confirmed that there is a lack of industrial evidence in most of the cases. Finally, we present where and when the papers have been published and who are the authors and institutions that are contributing to the field. We observed that the maturity is proven by the increment in the number of journals published along the years as well as the diversity of conferences and workshops where papers are published. We also suggest some synergies with other areas such as cloud or mobile computing among others that can motivate further research in the future.Ministerio de Economía y Competitividad TIN2015-70560-RJunta de Andalucía TIC-186

    Capturing variability in Model Based Systems Engineering

    Get PDF
    International audienceAutomotive model-based systems engineering needs to be dapted to the industry specific needs, in particular by implementing appropriate means of representing and operating with variability. We rely on existing modeling techniques as an opportunity to provide a description of variability adapted to a systems en- gineering model. However, we also need to take into account requirements related to backwards compatibility with current practices, given the industry experience in mass customization. We propose to adopt the product line paradigm in model-based systems engineering by extending the orthogonal variability model, and adapting it to our specific needs. This brings us to an expression closer to a description of constraints, related to both orthogonal variability, and to SysML system models. We introduce our approach through a discussion on the different aspects that need to be covered for expressing variability in systems engineering. We explore these aspects by observing an automotive case study, and relate them to a list of contextual requirements for variability management

    On the structure of problem variability: From feature diagrams to problem frames

    Get PDF
    Requirements for product families are expressed in terms of commonality and variability. This distinction allows early identification of an appropriate software architecture and opportunities for software reuse. Feature diagrams provide intuitive notations and techniques for representing requirements in product line development. In this paper, we observe that feature diagrams tend to obfuscate three important descriptions: requirements, domain properties and specifications. As a result, feature diagrams do not adequately capture the problem structures that underlie variability, and inform the solution structures of their complexity. With its emphasis on separation of the three descriptions, the problem frames approach provides a conceptual framework for a more detailed analysis of variability and its structure. With illustrations from an example, we demonstrate how problem frames analysis of variability can augment feature diagrams
    corecore