96 research outputs found

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    QoE Driven Multimedia Service Schemes in Wireless Networks Resource Allocation: Evolution from Optimization, Game Theory, to Economics

    Get PDF
    In order to deal with the Quality of Experience (QoE) improvement issue in the wireless networks services. In this dissertation we first investigated the Device to Device (D2D) relaying approach in the conventional Base Station (BS) to User Equipment (UE) two entities multimedia service system. In this part, the Multiple Input Multiple Output (MIMO) technology will be implemented in the D2D communication. Furthermore, factors such as the multimedia content distribution (i.e., Quad-tree fractal image compression method), the power allocation strategy, and modulation size are jointly considered to improve the QoE performance and energy efficiency. In addition, the emerging Non-Orthogonal Multiple Access (NOMA) transmission method is becoming very popular and being considered as one of the most potential technologies for the next generation of wireless networks. For the purpose of improving the QoE of UE in the wireless multimedia service, the power allocation method and the corresponding limitations are studied in detail in the wireless system where the traditional Orthogonal Multiple Access (OMA) technology and the promising NOMA technology are compared. At last, facing the real business model in the wireless network services, where the Content Provider (CP), Wireless Carrier (WC), and UE are included, we extend on work from the conventional BS-UE two entities research model to the CP-WC-UE three entities model. More specifically, a generalized best response Smart Media Pricing (SMP) method is studied in this dissertation. In our work, the CP and WC are treated as the service provider alliance. The SMP approach and the game theory are utilized to determine the data length of UE and the data price rate determined by the CP-WC union. It is worth pointing out that the concavity of utility function is no longer necessary for seeking the game equilibrium under the proposed best response game solution. Numerical simulation results also validate the system performance improvement of our proposed transmission schemes

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Architecture design for disaster resilient management network using D2D technology

    Get PDF
    Huge damages from natural disasters, such as earthquakes, floods, landslide, tsunamis, have been reported in recent years, claiming many lives, rendering millions homeless and causing huge financial losses worldwide. The lack of effective communication between the public rescue/safety agencies, rescue teams, first responders and trapped survivors/victims makes the situation even worse. Factors like dysfunctional communication networks, limited communications capacity, limited resources/services, data transformation and effective evaluation, energy, and power deficiency cause unnecessary hindrance in rescue and recovery services during a disaster. The new wireless communication technologies are needed to enhance life-saving capabilities and rescue services. In general, in order to improve societal resilience towards natural catastrophes and develop effective communication infrastructure, innovative approaches need to be initiated to provide improved quality, better connectivity in the events of natural and human disasters. In this thesis, a disaster resilient network architecture is proposed and analysed using multi-hop communications, clustering, energy harvesting, throughput optimization, reliability enhancement, adaptive selection, and low latency communications. It also examines the importance of mode selection, power management, frequency and time resource allocation to realize the promises of Long-term Evolution (LTE) Device to Device (D2D) communication. In particular, to support resilient and energy efficient communication in disaster-affected areas. This research is examined by thorough and vigorous simulations and validated through mathematical modelling. Overall, the impact of this research is twofold: i) it provides new technologies for effective inter- and intra-agency coordination system during a disaster event by establishing a stronger and resilient communication; and ii) It offers a potential solution for stakeholders such as governments, rescue teams, and general public with new informed information on how to establish effective policies to cope with challenges before, during and after the disaster events

    Device-to-Device Communication in 5G Cellular Networks

    Get PDF
    Owing to the unprecedented and continuous growth in the number of connected users and networked devices, the next-generation 5G cellular networks are envisaged to support enormous number of simultaneously connected users and devices with access to numerous services and applications by providing networks with highly improved data rate, higher capacity, lower end-to-end latency, improved spectral efficiency, at lower power consumption. D2D communication underlaying cellular networks has been proposed as one of the key components of the 5G technology as a means of providing efficient spectrum reuse for improved spectral efficiency and take advantage of proximity between devices for reduced latency, improved user throughput, and reduced power consumption. Although D2D communication underlaying cellular networks promises lots of potentials, unlike the conventional cellular network architecture, there are new design issues and technical challenges that must be addressed for proper implementation of the technology. These include new device discovery procedures, physical layer architecture and radio resource management schemes. This thesis explores the potentials of D2D communication as an underlay to 5G cellular networks and focuses on efficient interference management solutions through mode selection, resource allocation and power control schemes. In this work, a joint admission control, resource allocation, and power control scheme was implemented for D2D communication underlaying 5G cellular networks. The performance of the system was evaluated, and comparisons were made with similar schemes.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Resource Management for Device-to-Device Communications in Heterogeneous Networks Using Stackelberg Game

    Get PDF
    Device-to-device (D2D) communications and femtocell systems can bring significant benefits to users’ throughput. However, the complicated three-tier interference among macrocell, femtocell, and D2D systems is a challenging issue in heterogeneous networks. As D2D user equipment (UE) can cause interference to cellular UE, scheduling and allocation of channel resources and power of D2D communication need elaborate coordination. In this paper, we propose a joint scheduling and resource allocation scheme to improve the performance of D2D communication. We take UE rate and UE fairness into account by performing interference management. First, we construct a Stackelberg game framework in which we group a macrocellular UE, a femtocellular UE, and a D2D UE to form a two-leader one-follower pair. The cellular UE are leaders, and D2D UE is the follower who buys channel resources from the leaders. We analyze the equilibrium of the game and obtain solutions to the equilibrium. Second, we propose an algorithm for joint scheduling of D2D pairs based on their utility. Finally, we perform computer simulations to study the performance of the proposed scheme
    corecore