167 research outputs found

    Soft handover issues in radio resource management for 3G WCDMA networks

    Get PDF
    PhDMobile terminals allow users to access services while on the move. This unique feature has driven the rapid growth in the mobile network industry, changing it from a new technology into a massive industry within less than two decades. Handover is the essential functionality for dealing with the mobility of the mobile users. Compared with the conventional hard handover employed in the GSM mobile networks, the soft handover used in IS-95 and being proposed for 3G has better performance on both link and system level. Previous work on soft handover has led to several algorithms being proposed and extensive research has been conducted on the performance analysis and parameters optimisation of these algorithms. Most of the previous analysis focused on the uplink direction. However, in future mobile networks, the downlink is more likely to be the bottleneck of the system capacity because of the asymmetric nature of new services, such as Internet traffic. In this thesis, an in-depth study of the soft handover effects on the downlink direction of WCDMA networks is carried out, leading to a new method of optimising soft handover for maximising the downlink capacity and a new power control approach

    Power control for WCDMA

    Get PDF
    This project tries to introduce itself in the physical implementations that make possible the denominated third generation mobile technology. As well as to know the technology kind that makes possible, for example, a video-call in real time. During this project, the different phases passed from the election of WCDMA like the access method for UMTS will appear. Its coexistence with previous network GSM will be analyzed, where the compatibility between systems has been one of the most important aspects in the development of WCDMA, the involved standardization organisms in the process, as well as the different protocols that make the mobile communications within a network UTRAN possible. Special emphasis during the study of the great contribution that has offered WCDMA with respect to the control of power of the existing signals will be made. The future lines that are considered in the present, and other comment that already are in their last phase of development in the field of the mobile technology. UMTS through WCDMA can be summarized like a revolution of the air interface accompanied by a revolution in the network of their architecture

    An adaptive step size power control with transmit power control command aided mobility estimation

    Full text link
    Power control is one of the most important mechanisms influencing on the maximum capacity and performance of Wideband Code Division Multiple Access (WCDMA) systems. Power control algorithms used in Universal Mobile Telecommunication System (UMTS) are based on fixed step size algorithms. The algorithms adjust their transmitted power based on Transmit Power Control (TPC) commands. In this paper, we show that there is a significant correlation between TPC sequences and user mobility. We then introduce a new parameter called Consecutive TPC Ratio (CTR), which will be varied by user speeds. A new adaptive power control algorithm is also proposed. This new power control algorithm uses CTRs to adjust power control step sizes. The result shows that the proposed algorithm outperforms fixed step power control

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators

    Power control for WCDMA

    Get PDF
    This project tries to introduce itself in the physical implementations that make possible the denominated third generation mobile technology. As well as to know the technology kind that makes possible, for example, a video-call in real time. During this project, the different phases passed from the election of WCDMA like the access method for UMTS will appear. Its coexistence with previous network GSM will be analyzed, where the compatibility between systems has been one of the most important aspects in the development of WCDMA, the involved standardization organisms in the process, as well as the different protocols that make the mobile communications within a network UTRAN possible. Special emphasis during the study of the great contribution that has offered WCDMA with respect to the control of power of the existing signals will be made. The future lines that are considered in the present, and other comment that already are in their last phase of development in the field of the mobile technology. UMTS through WCDMA can be summarized like a revolution of the air interface accompanied by a revolution in the network of their architecture

    Prestasi dan perlaksanaan kawalan kuasa untuk sistem W-CDMA

    Get PDF
    Pa >aran perhubungan bersel telah berkembang secara raendadak pada beberapa tahun kebelakangan ini. Matlamat utama sistem perhubungan bersel ini adalah untuk menyediakan perkhidmatan perhubungan tanpa perlu memilih masa dan tempat. Teknologi antaramuka udara ' Wideband Code Division Multiple Access' ataupun secara ringkas W-CDMA telah dipilih untuk kebanyakan pengendali perkhidmatan perhubungan bersel di dalam merealisasikan perlaksanaan sistem perhubungan bersel generasi baru ini. Sistem W-CDMA diharapkan sebagai langkah pertama ke arah sistem bersel digit Generasi Ketiga. Salah satu daripada pengurusan sumber-sumber radio W-CDMA yang kritikal ialah kawalan kuasa. Tanpa kehadiran kawalan kuasa, kesan fenomena gangguan hujung-dekat-hujung-jauh menjadi perusa dan muatan sistem bergerak W-CDMA adalah sangat rendah. Takrifan kawalan kuasa yang baik adalah penting untuk sistem W-CDMA berfungsi dengan betul dan membolehkan pengguna-pengguna untuk berkongsi sumber-sumber sistem W-CDMA secara bersama di antara mereka. Tambahan lagi, dengan kawalan kuasa yang betul membolehkan jumlah penghantaran kuasa sistem bergerak dikurangkan kepada tahap minimum supaya tiada kuasa berlebihan yang diperlukan telah disinarkan dan melanjutkan hayat bated. Disertasi ini adalah hasil kajian ke atas prestasi algoritma kawalan kuasa sistem W-CDMA melalui simulasi komputer yang telah dibangunkan. Kesan perubahan beberapa parameter masukan terhadap mutu dan muatan sistem telah dianalisis berdasarkan beberapa andaian. Dua algoritma kawalan kuasa yang berlainan juga dibandingkan untuk menentukan prestasi algoritma yang menghasilkan keputusan yang lebih baik. Keputusan simulasi menunjukkan bahawa kawalan kuasa berupaya mengatasi masalah pemudaran isyarat dan gangguan hujung-dekat-hujungïżœjauh dengan menghasilkan tahap gangguan yang minimum bagi semua pengguna. Algoritma DSSPC (Dynamic Step Size Power Control) menunjukkan prestasi yang lebih baik berbanding algoritma FSSPC {Fixed Step Size Power Control) berdasarkan kepada keputusan simulasi yang telah dilakukan

    GAME THEORETIC APPROACH TO RADIO RESOURCE MANAGEMENT ON THE REVERSE LINK FOR MULTI-RATE CDMA WIRELESS DATA NETWORKS

    Get PDF
    This work deals with efficient power and rate assignment to mobile stations (MSs) involved in bursty data transmission in cellular CDMA networks. Power control in the current CDMA standards is based on a fixed target signal quality called signal to interference ratio (SIR). The target SIR represents a predefined frame error rate (FER). This approach is inefficient for data-MSs because a fixed target SIR can limit the MS's throughput. Power control should thus provide dynamic target SIRs instead of a fixed target SIR. In the research literature, the power control problem has been modeled using game theory. A limitation of the current literature is that in order to implement the algorithms, each MS needs to know information such as path gains and transmission rates of all other MSs. Fast rate control schemes in the evolving cellular data systems such as cdma2000-1x-EV assign transmission rates to MSs using a probabilistic approach. The limitation here is that the radio resources can be either under or over-utilized. Further, all MSs are not assigned the same rates. In the schemes proposed in the literature, only few MSs, which have the best channel conditions, obtain all radio resources. In this dissertation, we address the power control issue by moving the computation of the Nash equilibrium from each MS to the base station (BS). We also propose equal radio resource allocation for all MSs under the constraint that only the maximum allowable radio resources are used in a cell. This dissertation addresses the problem of how to efficiently assign power and rate to MSs based on dynamic target SIRs for bursty transmissions. The proposed schemes in this work maximize the throughput of each data-MS while still providing equal allocation of radio resources to all MSs and achieving full radio resource utilization in each cell. The proposed schemes result in power and rate control algorithms that however require some assistance from the BS. The performance evaluation and comparisons with cdma2000-1x-Evolution Data Only (1x-EV-DO) show that the proposed schemes can provide better effective rates (rates after error) than the existing schemes
    • 

    corecore