585 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Network Function Virtualization in Dynamic Networks: A Stochastic Perspective

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordAs a key enabling technology for 5G network softwarization, Network Function Virtualization (NFV) provides an efficient paradigm to optimize network resource utility for the benefits of both network providers and users. However, the inherent network dynamics and uncertainties from 5G infrastructure, resources and applications are slowing down the further adoption of NFV in many emerging networking applications. Motivated by this, in this paper, we investigate the issues of network utility degradation when implementing NFV in dynamic networks, and design a proactive NFV solution from a fully stochastic perspective. Unlike existing deterministic NFV solutions, which assume given network capacities and/or static service quality demands, this paper explicitly integrates the knowledge of influential network variations into a twostage stochastic resource utilization model. By exploiting the hierarchical decision structures in this problem, a distributed computing framework with two-level decomposition is designed to facilitate a distributed implementation of the proposed model in large-scale networks. The experimental results demonstrate that the proposed solution not only improves 3∼5 folds of network performance, but also effectively reduces the risk of service quality violation.The work of Xiangle Cheng is partially supported by the China Scholarship Council for the study at the University of Exeter. This work is also partially supported by the UK EPSRC project (Grant No.: EP/R030863/1)

    Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer Optimization Framework

    Full text link
    To enable an intelligent, programmable and multi-vendor radio access network (RAN) for 6G networks, considerable efforts have been made in standardization and development of open RAN (O-RAN). So far, however, the applicability of O-RAN in controlling and optimizing RAN functions has not been widely investigated. In this paper, we jointly optimize the flow-split distribution, congestion control and scheduling (JFCS) to enable an intelligent traffic steering application in O-RAN. Combining tools from network utility maximization and stochastic optimization, we introduce a multi-layer optimization framework that provides fast convergence, long-term utility-optimality and significant delay reduction compared to the state-of-the-art and baseline RAN approaches. Our main contributions are three-fold: i) we propose the novel JFCS framework to efficiently and adaptively direct traffic to appropriate radio units; ii) we develop low-complexity algorithms based on the reinforcement learning, inner approximation and bisection search methods to effectively solve the JFCS problem in different time scales; and iii) the rigorous theoretical performance results are analyzed to show that there exists a scaling factor to improve the tradeoff between delay and utility-optimization. Collectively, the insights in this work will open the door towards fully automated networks with enhanced control and flexibility. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms in terms of the convergence rate, long-term utility-optimality and delay reduction.Comment: 15 pages, 10 figures. A short version will be submitted to IEEE GLOBECOM 202
    • …
    corecore