14,997 research outputs found

    A Practical Guide to Robust Optimization

    Get PDF
    Robust optimization is a young and active research field that has been mainly developed in the last 15 years. Robust optimization is very useful for practice, since it is tailored to the information at hand, and it leads to computationally tractable formulations. It is therefore remarkable that real-life applications of robust optimization are still lagging behind; there is much more potential for real-life applications than has been exploited hitherto. The aim of this paper is to help practitioners to understand robust optimization and to successfully apply it in practice. We provide a brief introduction to robust optimization, and also describe important do's and don'ts for using it in practice. We use many small examples to illustrate our discussions

    Deep controlled learning of dynamic policies with an application to lost-sales inventory control

    Full text link
    Recent literature established that neural networks can represent good policies across a range of stochastic dynamic models in supply chain and logistics. We propose a new algorithm that incorporates variance reduction techniques, to overcome limitations of algorithms typically employed in literature to learn such neural network policies. For the classical lost sales inventory model, the algorithm learns neural network policies that are vastly superior to those learned using model-free algorithms, while outperforming the best heuristic benchmarks by an order of magnitude. The algorithm is an interesting candidate to apply to other stochastic dynamic problems in supply chain and logistics, because the ideas in its development are generic

    Breaking Sticks and Ambiguities with Adaptive Skip-gram

    Full text link
    Recently proposed Skip-gram model is a powerful method for learning high-dimensional word representations that capture rich semantic relationships between words. However, Skip-gram as well as most prior work on learning word representations does not take into account word ambiguity and maintain only single representation per word. Although a number of Skip-gram modifications were proposed to overcome this limitation and learn multi-prototype word representations, they either require a known number of word meanings or learn them using greedy heuristic approaches. In this paper we propose the Adaptive Skip-gram model which is a nonparametric Bayesian extension of Skip-gram capable to automatically learn the required number of representations for all words at desired semantic resolution. We derive efficient online variational learning algorithm for the model and empirically demonstrate its efficiency on word-sense induction task
    corecore