9 research outputs found

    Contrast Enhancement of Brightness-Distorted Images by Improved Adaptive Gamma Correction

    Full text link
    As an efficient image contrast enhancement (CE) tool, adaptive gamma correction (AGC) was previously proposed by relating gamma parameter with cumulative distribution function (CDF) of the pixel gray levels within an image. ACG deals well with most dimmed images, but fails for globally bright images and the dimmed images with local bright regions. Such two categories of brightness-distorted images are universal in real scenarios, such as improper exposure and white object regions. In order to attenuate such deficiencies, here we propose an improved AGC algorithm. The novel strategy of negative images is used to realize CE of the bright images, and the gamma correction modulated by truncated CDF is employed to enhance the dimmed ones. As such, local over-enhancement and structure distortion can be alleviated. Both qualitative and quantitative experimental results show that our proposed method yields consistently good CE results

    A Video Upgradation of Low Vision AVI Video by Individual Pixel Channel Intensity Measurement and Its Enhancement

    Get PDF
    From the past few decades, the researchers and scholars have done the quality work in video and image processing and a wide range of outcomes has been discover and invented including the resolutions and sensitivity. Apart from these work there are many aspects are still hidden such as record a high dynamic range images and videos in low-light conditions especially when light is very low. When the intensity of noise is greater than the signal then the traditional denoising techniques cannot done their work properly. For this problem, many approaches being designed and developed to enhance the low-light video but Low contrast and noise remains a barrier to visually pleasing videos in low light conditions. To capture the videos in social gatherings, concerts, parties, musical events, dark forest and in security monitoring situations are still unsolved problem. In such conditions the video enhancement of low light video is really a tedious and tough job. This paper is proposing a new approach of video enhancement. The work is further going on to find a technique for better visibility of video

    Mapping and Deep Analysis of Image Dehazing: Coherent Taxonomy, Datasets, Open Challenges, Motivations, and Recommendations

    Get PDF
    Our study aims to review and analyze the most relevant studies in the image dehazing field. Many aspects have been deemed necessary to provide a broad understanding of various studies that have been examined through surveying the existing literature. These aspects are as follows: datasets that have been used in the literature, challenges that other researchers have faced, motivations, and recommendations for diminishing the obstacles in the reported literature. A systematic protocol is employed to search all relevant articles on image dehazing, with variations in keywords, in addition to searching for evaluation and benchmark studies. The search process is established on three online databases, namely, IEEE Xplore, Web of Science (WOS), and ScienceDirect (SD), from 2008 to 2021. These indices are selected because they are sufficient in terms of coverage. Along with definition of the inclusion and exclusion criteria, we include 152 articles to the final set. A total of 55 out of 152 articles focused on various studies that conducted image dehazing, and 13 out 152 studies covered most of the review papers based on scenarios and general overviews. Finally, most of the included articles centered on the development of image dehazing algorithms based on real-time scenario (84/152) articles. Image dehazing removes unwanted visual effects and is often considered an image enhancement technique, which requires a fully automated algorithm to work under real-time outdoor applications, a reliable evaluation method, and datasets based on different weather conditions. Many relevant studies have been conducted to meet these critical requirements. We conducted objective image quality assessment experimental comparison of various image dehazing algorithms. In conclusions unlike other review papers, our study distinctly reflects different observations on image dehazing areas. We believe that the result of this study can serve as a useful guideline for practitioners who are looking for a comprehensive view on image dehazing

    Quality Assessment for Comparing Image Enhancement Algorithms

    No full text
    As the image enhancement algorithms developed in recent years, how to compare the performances of different image enhancement algorithms becomes a novel task. In this paper, we propose a framework to do quality assessment for comparing image enhancement algorithms. Not like traditional image quality assessment approaches, we focus on the relative quality ranking between enhanced images rather than giving an absolute quality score for a single enhanced image. We construct a dataset which contains source images in bad visibility and their enhanced images processed by different enhancement algorithms, and then do subjective assessment in a pair-wise way to get the relative ranking of these enhanced images. A rank function is trained to fit the subjective assessment results
    corecore