5 research outputs found

    EneA-FL: Energy-aware orchestration for serverless federated learning

    Get PDF
    Federated Learning (FL) represents the de-facto standard paradigm for enabling distributed learning over multiple clients in real-world scenarios. Despite the great strides reached in terms of accuracy and privacy awareness, the real adoption of FL in real-world scenarios, in particular in industrial deployment environments, is still an open thread. This is mainly due to privacy constraints and to the additional complexity stemming from the set of hyperparameters to tune when employing AI techniques on bandwidth-, computing-, and energy-constrained nodes. Motivated by these issues, we focus on scenarios where participating clients are characterised by highly heterogeneous computing capabilities and energy budgets proposing EneA-FL, an innovative scheme for serverless smart energy management. This novel approach dynamically adapts to optimise the training process while fostering seamless interaction between Internet of Things (IoT) devices and edge nodes. In particular, the proposed middleware provides a containerised software module that efficiently manages the interaction of each worker node with the central aggregator. By monitoring local energy budget, computational capabilities, and target accuracy, EneA-FL intelligently takes informed decisions about the inclusion of specific nodes in the subsequent training rounds, effectively balancing the tripartite trade-off between energy consumption, training time, and final accuracy. Finally, in a series of extensive experiments across diverse scenarios, our solution demonstrates impressive results, achieving between 30% and 60% lower energy consumption against popular client selection approaches available in the literature while being up to 3.5 times more efficient than standard FL solutions

    A Comprehensive Bibliometric Analysis on Social Network Anonymization: Current Approaches and Future Directions

    Full text link
    In recent decades, social network anonymization has become a crucial research field due to its pivotal role in preserving users' privacy. However, the high diversity of approaches introduced in relevant studies poses a challenge to gaining a profound understanding of the field. In response to this, the current study presents an exhaustive and well-structured bibliometric analysis of the social network anonymization field. To begin our research, related studies from the period of 2007-2022 were collected from the Scopus Database then pre-processed. Following this, the VOSviewer was used to visualize the network of authors' keywords. Subsequently, extensive statistical and network analyses were performed to identify the most prominent keywords and trending topics. Additionally, the application of co-word analysis through SciMAT and the Alluvial diagram allowed us to explore the themes of social network anonymization and scrutinize their evolution over time. These analyses culminated in an innovative taxonomy of the existing approaches and anticipation of potential trends in this domain. To the best of our knowledge, this is the first bibliometric analysis in the social network anonymization field, which offers a deeper understanding of the current state and an insightful roadmap for future research in this domain.Comment: 73 pages, 28 figure

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license
    corecore