47,571 research outputs found

    Non-constructive interval simulation of dynamic systems

    Get PDF
    Publisher PD

    QML-Morven : A Novel Framework for Learning Qualitative Models

    Get PDF
    Publisher PD

    Fuzzy qualitative simulation with multivariate constraints

    Get PDF
    Postprin

    Qualitative System Identification from Imperfect Data

    Full text link
    Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models. Typically, this has come to mean the identification of quantitative models expressed as differential equations. Quantitative modelling works best when the structure of the model (i.e., the form of the equations) is known; and the primary concern is one of estimating the values of the parameters in the model. For complex biological systems, the model-structure is rarely known and the modeler has to deal with both model-identification and parameter-estimation. In this paper we are concerned with providing automated assistance to the first of these problems. Specifically, we examine the identification by machine of the structural relationships between experimentally observed variables. These relationship will be expressed in the form of qualitative abstractions of a quantitative model. Such qualitative models may not only provide clues to the precise quantitative model, but also assist in understanding the essence of that model. Our position in this paper is that background knowledge incorporating system modelling principles can be used to constrain effectively the set of good qualitative models. Utilising the model-identification framework provided by Inductive Logic Programming (ILP) we present empirical support for this position using a series of increasingly complex artificial datasets. The results are obtained with qualitative and quantitative data subject to varying amounts of noise and different degrees of sparsity. The results also point to the presence of a set of qualitative states, which we term kernel subsets, that may be necessary for a qualitative model-learner to learn correct models. We demonstrate scalability of the method to biological system modelling by identification of the glycolysis metabolic pathway from data

    Mathematical Thinking Undefended on The Level of The Semester for Professional Mathematics Teacher Candidates

    Get PDF
    Mathematical thinking skills are very important in mathematics, both to learn math or as learning goals. Thinking skills can be seen from the description given answers in solving mathematical problems faced. Mathematical thinking skills can be seen from the types, levels, and process. Proportionally questions given to students at universities in Indonesia (semester I, III, V, and VII). These questions are a matter of description that belong to the higher-level thinking. Students choose 5 of 8 given problem. Qualitatively, the answers were analyzed by descriptive to see the tendency to think mathematically used in completing the test. The results show that students tend to choose the issues relating to the calculation. They are more use cases, examples and not an example, to evaluate the conjecture and prove to belong to the numeric argumentation. Used mathematical thinking students are very personal (intelligence, interest, and experience), and the situation (problems encountered). Thus, the level of half of the students are not guaranteed and shows the level of mathematical thinking

    An immune network approach to learning qualitative models of biological pathways

    Get PDF
    ACKNOWLEDGMENT GMC is supported by the CRISP project (Combinatorial Responses In Stress Pathways) funded by the BBSRC (BB/F00513X/1) under the Systems Approaches to Biological Research (SABR) Initiative. WP and GMC are also supported by the partnership fund from dot.rural, RCUK Digital Economy research.Postprin

    Semi-Quantitative Comparative Analysis And Its Application

    Get PDF
    SQCA is an implemented technique for the semi-quantitative comparative analysis of dynamical systems. It is both able to deal with incompletely specified models and make precise predictions by exploiting semi-quantitative information in the form of numerical bounds on the variables and functions occuring in the models. The technique has a solid mathematical foundation which facilitates proofs of correctness and convergence properties. SQCA represents the core of a method for the automated prediction of experimental results
    • ā€¦
    corecore