15,171 research outputs found

    Context-aware Captions from Context-agnostic Supervision

    Full text link
    We introduce an inference technique to produce discriminative context-aware image captions (captions that describe differences between images or visual concepts) using only generic context-agnostic training data (captions that describe a concept or an image in isolation). For example, given images and captions of "siamese cat" and "tiger cat", we generate language that describes the "siamese cat" in a way that distinguishes it from "tiger cat". Our key novelty is that we show how to do joint inference over a language model that is context-agnostic and a listener which distinguishes closely-related concepts. We first apply our technique to a justification task, namely to describe why an image contains a particular fine-grained category as opposed to another closely-related category of the CUB-200-2011 dataset. We then study discriminative image captioning to generate language that uniquely refers to one of two semantically-similar images in the COCO dataset. Evaluations with discriminative ground truth for justification and human studies for discriminative image captioning reveal that our approach outperforms baseline generative and speaker-listener approaches for discrimination.Comment: Accepted to CVPR 2017 (Spotlight

    Reliability analysis of dynamic systems by translating temporal fault trees into Bayesian networks

    Get PDF
    Classical combinatorial fault trees can be used to assess combinations of failures but are unable to capture sequences of faults, which are important in complex dynamic systems. A number of proposed techniques extend fault tree analysis for dynamic systems. One of such technique, Pandora, introduces temporal gates to capture the sequencing of events and allows qualitative analysis of temporal fault trees. Pandora can be easily integrated in model-based design and analysis techniques. It is, therefore, useful to explore the possible avenues for quantitative analysis of Pandora temporal fault trees, and we identify Bayesian Networks as a possible framework for such analysis. We describe how Pandora fault trees can be translated to Bayesian Networks for dynamic dependability analysis and demonstrate the process on a simplified fuel system model. The conversion facilitates predictive reliability analysis of Pandora fault trees, but also opens the way for post-hoc diagnostic analysis of failures

    What May Visualization Processes Optimize?

    Full text link
    In this paper, we present an abstract model of visualization and inference processes and describe an information-theoretic measure for optimizing such processes. In order to obtain such an abstraction, we first examined six classes of workflows in data analysis and visualization, and identified four levels of typical visualization components, namely disseminative, observational, analytical and model-developmental visualization. We noticed a common phenomenon at different levels of visualization, that is, the transformation of data spaces (referred to as alphabets) usually corresponds to the reduction of maximal entropy along a workflow. Based on this observation, we establish an information-theoretic measure of cost-benefit ratio that may be used as a cost function for optimizing a data visualization process. To demonstrate the validity of this measure, we examined a number of successful visualization processes in the literature, and showed that the information-theoretic measure can mathematically explain the advantages of such processes over possible alternatives.Comment: 10 page

    Abandon Statistical Significance

    Get PDF
    We discuss problems the null hypothesis significance testing (NHST) paradigm poses for replication and more broadly in the biomedical and social sciences as well as how these problems remain unresolved by proposals involving modified p-value thresholds, confidence intervals, and Bayes factors. We then discuss our own proposal, which is to abandon statistical significance. We recommend dropping the NHST paradigm--and the p-value thresholds intrinsic to it--as the default statistical paradigm for research, publication, and discovery in the biomedical and social sciences. Specifically, we propose that the p-value be demoted from its threshold screening role and instead, treated continuously, be considered along with currently subordinate factors (e.g., related prior evidence, plausibility of mechanism, study design and data quality, real world costs and benefits, novelty of finding, and other factors that vary by research domain) as just one among many pieces of evidence. We have no desire to "ban" p-values or other purely statistical measures. Rather, we believe that such measures should not be thresholded and that, thresholded or not, they should not take priority over the currently subordinate factors. We also argue that it seldom makes sense to calibrate evidence as a function of p-values or other purely statistical measures. We offer recommendations for how our proposal can be implemented in the scientific publication process as well as in statistical decision making more broadly

    Machine learning techniques for fault isolation and sensor placement

    Get PDF
    Fault isolation and sensor placement are vital for monitoring and diagnosis. A sensor conveys information about a system's state that guides troubleshooting if problems arise. We are using machine learning methods to uncover behavioral patterns over snapshots of system simulations that will aid fault isolation and sensor placement, with an eye towards minimality, fault coverage, and noise tolerance

    Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations

    Full text link
    Post-hoc explanations of machine learning models are crucial for people to understand and act on algorithmic predictions. An intriguing class of explanations is through counterfactuals, hypothetical examples that show people how to obtain a different prediction. We posit that effective counterfactual explanations should satisfy two properties: feasibility of the counterfactual actions given user context and constraints, and diversity among the counterfactuals presented. To this end, we propose a framework for generating and evaluating a diverse set of counterfactual explanations based on determinantal point processes. To evaluate the actionability of counterfactuals, we provide metrics that enable comparison of counterfactual-based methods to other local explanation methods. We further address necessary tradeoffs and point to causal implications in optimizing for counterfactuals. Our experiments on four real-world datasets show that our framework can generate a set of counterfactuals that are diverse and well approximate local decision boundaries, outperforming prior approaches to generating diverse counterfactuals. We provide an implementation of the framework at https://github.com/microsoft/DiCE.Comment: 13 page

    Sub-Optimal Allocation of Time in Sequential Movements

    Get PDF
    The allocation of limited resources such as time or energy is a core problem that organisms face when planning complex actions. Most previous research concerning planning of movement has focused on the planning of single, isolated movements. Here we investigated the allocation of time in a pointing task where human subjects attempted to touch two targets in a specified order to earn monetary rewards. Subjects were required to complete both movements within a limited time but could freely allocate the available time between the movements. The time constraint presents an allocation problem to the subjects: the more time spent on one movement, the less time is available for the other. In different conditions we assigned different rewards to the two tokens. How the subject allocated time between movements affected their expected gain on each trial. We also varied the angle between the first and second movements and the length of the second movement. Based on our results, we developed and tested a model of speed-accuracy tradeoff for sequential movements. Using this model we could predict the time allocation that would maximize the expected gain of each subject in each experimental condition. We compared human performance with predicted optimal performance. We found that all subjects allocated time sub-optimally, spending more time than they should on the first movement even when the reward of the second target was five times larger than the first. We conclude that the movement planning system fails to maximize expected reward in planning sequences of as few as two movements and discuss possible interpretations drawn from economic theory
    • …
    corecore