1,156 research outputs found

    A Minimalist Approach to Type-Agnostic Detection of Quadrics in Point Clouds

    Get PDF
    This paper proposes a segmentation-free, automatic and efficient procedure to detect general geometric quadric forms in point clouds, where clutter and occlusions are inevitable. Our everyday world is dominated by man-made objects which are designed using 3D primitives (such as planes, cones, spheres, cylinders, etc.). These objects are also omnipresent in industrial environments. This gives rise to the possibility of abstracting 3D scenes through primitives, thereby positions these geometric forms as an integral part of perception and high level 3D scene understanding. As opposed to state-of-the-art, where a tailored algorithm treats each primitive type separately, we propose to encapsulate all types in a single robust detection procedure. At the center of our approach lies a closed form 3D quadric fit, operating in both primal & dual spaces and requiring as low as 4 oriented-points. Around this fit, we design a novel, local null-space voting strategy to reduce the 4-point case to 3. Voting is coupled with the famous RANSAC and makes our algorithm orders of magnitude faster than its conventional counterparts. This is the first method capable of performing a generic cross-type multi-object primitive detection in difficult scenes. Results on synthetic and real datasets support the validity of our method.Comment: Accepted for publication at CVPR 201

    Effective reconstruction of generic genus 4 curves from their theta hyperplanes

    Full text link
    Effective reconstruction formulas of a curve from its theta hyperplanes are known classically in genus 2 (where the theta hyperplanes are Weierstrass points), and 3 (where, for a generic curve, the theta hyperplanes are bitangents to a plane quartic). However, for higher genera, no formula or algorithm are known. In this paper we give an explicit (and simple) algorithm for computing a generic genus 4 curve from it's theta hyperplanes.Comment: no content modification to previous version; presentation modification following referees comment

    Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

    Get PDF
    In 3D reconstruction, the recovery of the calibration parameters of the cameras is paramount since it provides metric information about the observed scene, e.g., measures of angles and ratios of distances. Autocalibration enables the estimation of the camera parameters without using a calibration device, but by enforcing simple constraints on the camera parameters. In the absence of information about the internal camera parameters such as the focal length and the principal point, the knowledge of the camera pixel shape is usually the only available constraint. Given a projective reconstruction of a rigid scene, we address the problem of the autocalibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. We propose an algorithm that only requires 5 cameras (the theoretical minimum), thus halving the number of cameras required by previous algorithms based on the same constraint. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient way. This parameterization is then used to solve autocalibration from five or more cameras, reducing the three-dimensional search space to a two-dimensional one. We provide experiments with real images showing the good performance of the technique.Comment: 19 pages, 14 figures, 7 tables, J. Math. Imaging Vi

    Instanton bundles on Fano threefolds

    Full text link
    We introduce the notion of an instanton bundle on a Fano threefold of index 2. For such bundles we give an analogue of a monadic description and discuss the curve of jumping lines. The cases of threefolds of degree 5 and 4 are considered in a greater detail.Comment: 31 page, to appear in CEJ

    On tangents to quadric surfaces

    Get PDF
    We study the variety of common tangents for up to four quadric surfaces in projective three-space, with particular regard to configurations of four quadrics admitting a continuum of common tangents. We formulate geometrical conditions in the projective space defined by all complex quadric surfaces which express the fact that several quadrics are tangent along a curve to one and the same quadric of rank at least three, and called, for intuitive reasons: a basket. Lines in any ruling of the latter will be common tangents. These considerations are then restricted to spheres in Euclidean three-space, and result in a complete answer to the question over the reals: ``When do four spheres allow infinitely many common tangents?''.Comment: 50 page
    • …
    corecore