190,486 research outputs found

    Mixed-integer Quadratic Programming is in NP

    Full text link
    Mixed-integer quadratic programming is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing that if the decision version of mixed-integer quadratic programming is feasible, then there exists a solution of polynomial size. This result generalizes and unifies classical results that quadratic programming is in NP and integer linear programming is in NP

    A new approach to secure economic power dispatch

    Get PDF
    This article presents a new nonlinear convex network flow programming model and algorithm for solving the on-line economic power dispatch with N and N−1 security. Based on the load flow equations, a new nonlinear convex network flow model for secure economic power dispatch is set up and then transformed into a quadratic programming model, in which the search direction in the space of the flow variables is to be solved. The concept of maximum basis in a network flow graph was introduced so that the constrained quadratic programming model was changed into an unconstrained quadratic programming model which was then solved by the reduced gradient method. The proposed model and its algorithm were examined numerically with an IEEE 30-bus test system on an ALPHA 400 Model 610 machine. Satisfactory results were obtaine

    The parallel approximability of a subclass of quadratic programming

    Get PDF
    In this paper we deal with the parallel approximability of a special class of Quadratic Programming (QP), called Smooth Positive Quadratic Programming. This subclass of QP is obtained by imposing restrictions on the coefficients of the QP instance. The Smoothness condition restricts the magnitudes of the coefficients while the positiveness requires that all the coefficients be non-negative. Interestingly, even with these restrictions several combinatorial problems can be modeled by Smooth QP. We show NC Approximation Schemes for the instances of Smooth Positive QP. This is done by reducing the instance of QP to an instance of Positive Linear Programming, finding in NC an approximate fractional solution to the obtained program, and then rounding the fractional solution to an integer approximate solution for the original problem. Then we show how to extend the result for positive instances of bounded degree to Smooth Integer Programming problems. Finally, we formulate several important combinatorial problems as Positive Quadratic Programs (or Positive Integer Programs) in packing/covering form and show that the techniques presented can be used to obtain NC Approximation Schemes for "dense" instances of such problems.Peer ReviewedPostprint (published version
    corecore