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Abstract 
In this paper we deal with the parallel approximabil- 

i t y  of a special class of Quadratic Programming (QP), 
called Smooth Positive Quadratic Programming. This 
subclass of QP is obtained by imposing restrictions on 
the coeficients of the QP instance. The Smoothness 
condition restricts the magnitudes of the coeficients 
while the positiveness requires that all the coefficients 
be non-negative. Interestingly, even with these restric- 
tions several combinatorial problems can be modeled b y  
Smooth QP. We show NC Approximation Schemes for 
the instances of Smooth Positive QP. This is done by  
reducing the instance of QP to an instance of Posi- 
tive Linear Programming, finding in NC an approxi- 
mate fractional solution to the obtained program, and 
then rounding the fractional solution to an integer ap- 
proximate solution for the original problem. Then we 
show how to extend the result for positive instances of 
bounded degree to Smooth Integer Programming prob- 
lems. Finally, we formulate several important combi- 
natorial problems as Positive Quadratic Programs (or 
Positive Integer Programs) in packing/covering form 
and show that the techniques presented can be used 
to obtain NC Approximation Schemes for  “dense” in- 
stances of such problems. 

1 Introduction 
Quadratic Programming represents a special class 

of Non-Linear Programming in which the objective 
function is quadratic and the constraints are linear. 
Quadratic Programs arise in a wide variety of appli- 
cations including scheduling and allocation problems, 
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regression analysis in statistics, economic models of 
optimal sales revenues, etc. The sequential complex- 
ity of QP is well understood. QP, in its general form, is 
NP-complete. Sahni showed that QP is NP-hard [18] 
and later on Vavasis proved that QP is in the class N P  

In this paper we study the parallel approximability 
of a special class of QP. Recall, the class NC consists 
of problems that can be solved by a PRAM algorithm 
whose running time is polylogarithmic in instance size 
while using a polynomial number of processors. Thus 
a problem that is shown to be P-complete unlikely 
will belong to NC [5] .  For those hard problems it is 
interesting to analyze whether we can get an approxi- 
mate algorithm in NC. Problems easy to approximate 
belong to NCAS, the class of problems that have an 
NC Approximation Scheme, i.e., a family of NC algo- 
rithms { A E } , > ~ ,  such that A, has approximation ra- 
tio 1 + E ,  and whose running time depends arbitrarily 
on E .  For a discussion of non-approximable problems 
see, e.g., [4]. Usually the last behavior is proved by 
showing that adequate approximation problems are P- 
complete. For example, Convex Quadratic Program- 
ming (CQP) that is, Quadratic Programming where 
the objective function is convex is non-approximable 
in NC. Indeed, CQP is in P (it is solved in poly- 
nomial time through the ellipsoid method [6] or the 
interior point algorithm [8]), and we can easily no- 
tice that CQP is non-approximable in NC by making 
use of the fact that Approximating Linear Program- 
ming is P-complete [19]. In fact, we can state non- 
approximability results also for a couple of problems 
related to CQP. Solution Approximation consists in 
finding a feasible solution x to CQP whose norm is 
close to that of an optimal solution x*. Value Approx- 
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imation is to find a vector x such that the value of the 
objective function on it is close to the optimal value, 
without the condition that x be feasible. Consider- 
ing all possible values for the error parameter E ,  we 
get two families of problems, one for each type of ap- 
proximation. Both these families can be easily shown 
P-complete, for any value of E ,  thus proving that CQP 
is hard to approximate. 

Our main attention here is on another special 
class of QP, called Smooth Quadratic Programming, 
in which we impose restrictions on the magnitudes of 
all the coefficients appearing in the instance. We show 
that, given an instance of Smooth QP, if it is, in addi- 
tion, positive, i.e., all the coefficients are non-negative, 
then we can find an NC Approximation Scheme for the 
problem restricted to such instances. Recall that Luby 
and Nisan [ll] gave a parallel approximation scheme 
for Positive Linear Programming (Positive LP) - the 
special case of LP in packing/covering form with all 
the coefficients of the instance being non-negative. We 
obtain the result by reducing the instance of QP to an 
instance of Positive LP, finding in NC an approximate 
fractional solution to the resulting program, and then 
rounding the fractional solution to an integer approxi- 
mate solution for the original problem. The reduction 
from QP to LP uses the Random Sampling technique, 
and we show how to perform it deterministically in NC 
by using random walks in constant degree expanders. 
The rounding of the fractional solution involves the 
Randomized Rounding method of [17], and we show 
that the integer solution can be found also determin- 
istically in NC. Furthermore, we prove that the NC 
Approximation Scheme for Smooth QP can be used to 
obtain NC Approximation Schemes for bounded de- 
gree Smooth Integer Programs. 

We should point out, however, that the “positive- 
ness” and “smoothness” conditions are restrictive, in 
the sense that it is difficult to find natural problems 
whose QP is a t  the same time positive and smooth. 
Fortunately, even with these conditions we are able 
to  cast in our model several important combinatorial 
problems. These are MAX CUT, MAX DICUT, MAX 
2SAT and MAX kSAT. First, we formulate all of these 
problems as Positive QP or Positive Integer Programs 
in the packing/covering form, and then we derive NC 
Approximation Schemes for their “dense” instances. 
Notice that these programs are different from those 
given in [3], in that the last ones are neither positive 
nor in packing/covering form. Interestingly, for the 
problems on graphs, imposing in their QP programs 
the smoothness condition is equivalent with that of the 
graph instance being dense. Our results for the prob- 

lems mentioned above match those of the sequential 
case given in [3]. 

2 Definitions 
In this section we give formal definitions of the 

problems used in the paper. Let Q be an n x n matrix, 
A an m x n matrix, a E R, b E R” and c E Rn. 
Linear Programming problem (LP) is 

minimize c*x 
subject to Ax 2 b, x 2 0 

Positive LP in packing form is max { c T z  : Ax 5 
b;  x 2 O}, and in covering form min {by : ATy 2 
c; y 2 0}, where A, b and c have non-negative entries. 
Quadratic Prograimming problem is 

minimize 
subject to Ax 2 b 

1/’2 x*Qz + cTz + a 

Smooth Integer :Programming [3]. Let x = 
A Smooth degree-l Integer Program has the 

form 

minimize p ( q ,  , . . . , xn) 

xi E: (0, l}, 

where p ( z 1 ,  . . . , xn) is a degree-Z polynomial in which 
the coefficient of the degree-i term is either 0 or 
O(n‘-i). 

3 Approximating; Smooth Quadratic 

In this section we present our main result. We con- 
sider a restricted version of QP that we call Smooth 
Quadratic Programming (Smooth QP). Our definition 
for Smooth Q P  comes from the more general defini- 
tion of [3] for Smootlh Integer Programming. 
Smooth Quadratic: Programming (Smooth QP) is 

subject to W x  2 d (1) 
1 5 i 5 n,  

Programming 

minimize g(x) = 2; aijxiz j  + bizi + a 

subject to  W z  2 d (’4 
xi E (0, Il}, 1 5 i 5 12, 

where a i j ,  are 0 ( 1 ) ,  bi are 0 or @(n), and a is 0 or 
O ( n 2 )  and, finally, wij  are 0(1) and such that for any 
i =  1, ..., m,Cj”=lvri j -di=Q(logn) .  

Here is some intuition behind this subclass of QP. 
The condition on the magnitudes of the coefficients of 
the objective function assures that the optimal value 
is O(n”) and therefore while obtaining an (1  + E)- 
approximation of the optimum value, a large error 
(i.e. of order En2) is allowable. On the other hand, 
the restrictions on wij and di’s is to assure that after 
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rounding the fractional values of variables xi to 0/1 
values y;, the integer solution y will satisfy W y  2 d 
with positive probability. This explains, intuitively, 
why the approximation of Smooth QP is (expected to 
be) more easy. 

We show that, given an instance of Smooth QP, 
we can approximate it in NC if it is, in addition, posi- 
tive. An instance of Smooth QP is called positive if all 
the coefficients of the instance are non-negative. We 
will show that for Positive Smooth QP we can achieve 
in NC an (1 + &)-approximation for any (constant) 
value of E ,  thus the problem has an NC Approxima- 
tion Scheme. As we will see this result can be easily 
extended to the general case, that is for positive in- 
stances of Smooth degree-1 Integer Programming. To 
prove the result, we will make use of the following 
known results. The first one is a well known tech- 
nique on how to estimate the sum of n numbers by 
random sampling (see, e.g., [15]). 

Lemma 1 (Sampling Lemma) 
Let be a set of n numbers, where each ai is 
O(1). Let p = ai be their sum. If we pick uni- 
formly a t  random Q subset of s = O(1og n/E2) of ai’s 
and compute their sum q,  then with high probability, 
i.e., with probability at least 1 - O(l /n ) ,  we have that 
p -  E n  5 qnls 5 p +  E n .  

The second result by Raghavan and Thompson [17] 
shows how to round a fractional solution of a linear 
program max{Cr=l x, : A x  5 r} to an integer solu- 
tion of the same linear program, known as Random- 
ized Rounding with Scaling. Given such a linear 
program, let i7* be its optimal fractional value and 
U’ = G * ( l  - S), for a small 6 > 0. 

Theorem 1 (Theorem 4.3 in [17]) 
Let 61 > 0 ,  62  > 0 be such that 61 + 6 2  < 1. I f  there is 
a constant 6 E (0,1/2] such that 

then there exists an integer solution to Ax 5 r with 
objective function value a t  least U’ - ,/-. 
Notice that the above theorem does not apply to gen- 
eral linear programs but only when restricted to those 
which satisfy condition (3). We will discuss on this 
point later but let us just mention that such a con- 
dition is to assure that after rounding the fractional 
values of variables xi to 0/1 values y;, y will satisfy 
A x  5 r with high probability. Notice that, in partic- 
ular, when ri = R(1og n)  the condition (3) holds. 

We prove the following theorem. 

Theorem 2 Given a positive instance of Smooth QP 
and a fixed E ,  we can find in NC a 0,l assignment to 
variables xi such that x satisfies W x  2 d ,  and 

where g(x) is the objective function and g(x*) is its 
optimal value. 

To prove the theorem, we first observe the following. 
Let us write (2) equivalently as’: 

minimize c 
subject to xTAx + bx 5 c 

W x 2 d  
xi E (0, I}, 

(4) 
1 5 i 5 n. 

Therefore, for Theorem 2, it suffices to prove the fol- 
lowing theorem. 

Theorem 3 Suppose there is Q 0,l solution to the fol- 
lowing Positive Quadratic System 

where aij, wij are 0(1), bi = @(n) and c is a constant. 
Then, for  any fixed E ,  we can find in NC an assign- 
ment of 0,i values to xi such that x satisfies W x  > d,  
and 

xTAx + b z  5 c + En2 (6) 

The proof follows the ideas of a theorem from [3]. Here 
we observe that under our conditions, the 0 , l  solution 
can be found also in NC. The idea is to reduce the QP 
instance to an instance of LP. Note that the result- 
ing instance will be positive and thus an algorithm for 
Positive Linear Programming [ll] is applied to find a 
fractional solution in NC. Then, we round the frac- 
tional solution to a 0 , l  solution using the Randomized 
Rounding. In contrast to  the reduction of the sequen- 
tial case, our reduction involves further modifications 
to the instance of L P  in order to enable the Luby and 
Nisan algorithm, which works only for Positive LP in 
packing/covering form. 

Two sources of randomness appear in this scheme. 
First, the reduction we will describe in the next section 
uses randomization, so we have to show how to achieve 
it in NC. And, secondly, randomness appears when we 
apply the Randomized Rounding. 

‘The constant a in the objective function is negligible. 

476 



3.1 Reducing Positive Smooth QP to L P  
The reduction is as follows. Let x# be a feasible 

solution of (5), as supposed, and let us write r# = 
x # A  + b. Since x T A x  + bx = ( x T A  + b ) x ,  we can 
express (5) as 

x T A  + b 5 r# 
r # x  5 c 

W x > d  
0 5 X i < 1  

(LP3) 
We have transformed the restrictions “=” into “I,” 

yet this does not change the optimal solution because 
xi + zi appears positively in the objective function, 
and since we maximize this “forces” those restrictions 
to hold with equality. Moreover, the feasible solutions 
of (LP2) and (LP3) are related as follows: 

(I’P 1 )  
Proposition 3 (a) <f ( 2 ,  z )  is a feasible solution to 
(LP2) then it is also feasible for  (LP3); (b) if ( x , z )  
is an (1 - &)-optimal soiution to (LP3) then we can 
construct ( X I ,  z’) in NC such that z‘ is feasible to 
W z s W . 1 - d  and 

for which x# is also a feasible solution. The following 
observation is immediate. 

Proposition 1 If x is a feasible solution to (1,Pi) 
then x is also feasible for the system (5). 

Clearly, any coefficient in (LP1) is non-negative. How- 
ever, (LP1) is not in the packing/covering form be- 
cause in it we have both types of restrictions. To over- 
come this, we modify (LP1) appropriately by taking 
z = 1 - x (i.e., zi = 1 - x i ) ,  where 1 is the n-vector 
of all ones. Thus, (LP1) is written as 

x T A  + b 5 r# 
r#x  5 c 

W Z  I W * I  - d 
xi + zi = 1 

0 5 xi, zi 5 1, 1 5 i 5 12. 

(LP2) 
We can suppose, without loss of generality, that 

W . 1 - d 2 0 because otherwise the system W x  2 d 
would not have a solution. So, the above program 
(LP2) is still positive. The relation between (LP1) 
and (LP2) is given as follows. 

Proposition 2 The following hold 

a) if x is a feasible solution to (LPi )  then (x ,  1 - x )  

b) if ( x ,  z )  is a feasible solution to (LP2) then x is a 

Finally, to transform the conditions xi + z; = 1 into 
xi + zi 5 1, we add to (LP2) an adequate objective 
function (see, e.g., [20]) resulting in the following prc- 
gram: 

is also feasible for (LP2). 

feasible solution to (LPi). 

d T A  + ti < r# + IClm 
r # d  c + 1<2&n2 

where IS1 and IC2 are two constants computable in NC 
from the instance. 

Proof. b )  A near-optimal solution (2, z )  to  (LP3) can 
be found via the Luby 8~ Nisan’s algorithm. Such 
solution will have cost at least (1 - E). (supposing 
that (LP2) is feasible). Now, we define z’ = z and 
XI = 1 - z .  Since 

we will have that xi $- zi  FY 1 - E therefore, intuitively, 
the values of xi will not increase too much. More 
precisely, let, for any i ,  xi = xi + ~ i ,  and also e = 
( € 1 ,  . . . , E ~ ) .  Notice that 

n n n 

CEi = C ( 1  - xi - Z i )  = n - C(Xi + Z i )  

i = l  i=l i=l 

5 n - (1 - E ) .  = En. 

Clearly, the conditions W z  5 W - 1  -d  will be satisfied 
by z’ and for the rest of constraints they might be 
violated by 2‘. However, because of the magnitudes 
of a i j  = 0 ( 1 )  and r# = @(n),  for x‘ we have that 

xITA + b = (3 + e)T.A + b 5 r# + IClm 
T#X’ = r#( ,z  + e )  5 c + 1<2&n2 

(9) 
(IO) 

where IC1 and IC2 are two constants defined as follows: 
IC1 = maG,ja;j and Kz = maxiai where CY; are the 

maximize Cy=l (x i  + zi) 
subject to x T A  + 6 5 r# (7) 

r#x  5 c (8) upper bounds on T # ,  i.e., r# 5 ai . n. 0 
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Next, having (x', z ' ) ,  we apply the Randomized 
Rounding with Scaling (as explained previously, The- 
orem 4.3 in [17]) to W z  5 W . 1 - d. We can ap- 
ply this theorem because we know, from the definition 
of Smooth QP, that the ith component of W .  1 - d 
is Q(1ogn) and therefore the condition of Raghavan 
& Thompson's theorem holds. Rounding the feasible 
fractional solution z gives a 0 , l  solution U ,  that with 
high probability, satisfies W u  5 W . 1 - d. Letting 
y = 1 - U ,  we have Wy 2 d .  Furthermore, for y we 
will have: 

(11) 
$A, + bi 5 (r# + Kim) + O ( d m  
r # y  5 ( c  + I i 2 m 2 )  + O(n) . ~ ( d z ) .  

Consequently, 

y*Ay + by = (yTA + b)y 

5 ( ( r #  + IiIEn) + ~(Jnlogn)) y 

< - r#y  + ~ l s n l -  y + O(Jn=)l. y 

5 (c + Ii2&n2) + O(n) . o(J*) + 
+ K l m l .  y + O(J=)I . y 

5 c + (IC1 + Kz + 2)zn2. 

Thus, if we find the fractional solution with E' = 
~/( l i ; l+I i2+2)  we will have, from above, yTAy+by 5 
c + En2, as desired. But, we can write (7) only if we 
knew the values r#. Instead, it is shown in [3] that 
using estimates r; for them such that 

Ir# - riI < En (12) 

then (11) and (12) still hold. To show that such es- 
timates can be found in NC, we first prove that they 
can be found in RNC and later we prove that they 
can be found also deterministically in NC. To find 
r = in RNC we use the Sampling Lemma to 
produce estimates for r# .  We can run in par- 
allel no(liaa) positive linear programs and take as es- 
timate the one whose linear program has the best out- 
come. The values ri are found as follows. 

1. 

2. 

Choose a set S of k = O(1og n/E2) indices at ran- 
dom. 

In parallel, for each of 2k = n o ( l / E a )  possible as- 
signments to variables with indices in S produce 
an estimate r of r# by taking 

where s j  is the value assigned to  the j-th variable. 

Since the assignments are found exhaustively, in one 
of the assignments generated above we have s j  = x;, 
that is, s j  is the j-th component of the optimal solu- 
tion. In order to estimate r# we only need to estimate 
aijxJ, since r# = Ca; jxJ  + b; and 6; is a constant. 
Applying the Sampling Lemma on the set ( a i j x : } ,  re- 

Comment When there are no linear restrictions 
Wx 2 d ,  the Randomized Rounding with Scaling is 
applied directly to the system {xtA+b <_ r # ,  r#x 5 c}.  
Arora, Iiarger and liarpinski [3] have presented their 
scheme precisely f o r  this case. 
3.2 Derandomization 

Now we show that both the Sampling Lemma and 
the Randomized Rounding can be done in NC. For 
the Sampling Lemma, we can use similar arguments 
to those for the sequential case [3]. Instead of choos- 
ing k = O(logn/E2) indices independently, it suffices 
to choose the vertices encountered in a random walk 
of length IC on a constant degree expander. The num- 
ber of such walks is i.e., polynomial in n and 
therefore can be handled in NC. So, it remains to ex- 
plain the following two points: first, how to construct 
in NC a constant degree expander, and second, how to 
simulate the random walk in NC. Both these points 
have been extensively treated in [lo,  13, 9, 11, and 
we give a simple explanation as indicated in [12]. A 
constant degree d expander on n nodes is an n-node d- 
regular graph in which the number of neighbors of any 
set of vertices S is larger than some positive constant 
multiple of the cardinality of S (see, e.g., [15, pages 
108-1121). It is well known that the adjacency ma- 
trix of such an expander is a symmetric matrix whose 
greatest eigenvalue is d and whose second largest one 
is less than d .  Such constant degree expanders can 
be explicitly constructed in NC for any n and d ,  even 
with the additional condition that the second great- 
est eigenvalue X be less than d9I1O [9]. Let N = 2', 
where N = n0(1/E2), and let us identify the set (0,l) '  
with the nodes of a d-regular N-node graph expander 
G, where d is set to some constant value such that 
X 5 d/4.  Then, we choose the nodes y1, ..., y~ as 
the nodes visited in a random walk of length IC, with 
k = O(1og n / ~ ~ ) ,  starting from a random node z .  The 
random walk is determined by the starting node z and 
integers ij E (1 , .  . . , d } ,  for j E (1,. . .,IC} describing 
which edge to  use in the j-th step of the walk. Thus, 
y1 is the il-th neighbor of z ,  and for j 2 2, yj is 
the ij-th neighbor of yj-1. The number of random 
bits used in this process is r + O ( k ) ,  and therefore 
the whole process can be simulated deterministically 
in NC [l, IS]. 

sults in estimates that satisfy (12). o 
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Regarding the Randomized Rounding, this tech- 
nique, in its general setting, seems to be inherently 
sequential [14]. However, it is possible to derandom- 
ize it for several cases, and in particular, for the linear 
systems of all coefficients positive numbers. Applica- 
tion of this sort can be found in [14, 71 (known as 
Lattice Approximation Technique), or in [2] (applied 
to PIP’S-Packing Integer Programs). In both cases 
the condition for the positive coefficients to be posi- 
tive is crucial. The linear program of our case matches 
the required conditions of these techniques. 0 

3.3 Extensions 
From the arguments in the previous subsections we 

have already proved Theorem 2. This result can be ex- 
tended easily to positive instances of Smooth degree-1 
Integer Programming, for fixed 1. Indeed, in this case 
we reduce (as in the case of Smooth QP) the degree-1 
program to a degree-(1 - 1) program, and successively 
until a Smooth QP is obtained, whose approximate 
solution is also an approximate solution for the orig- 
inal problem. Each step introduces a small error but 
we do this a constant number of times overall. Note 
that the reduction is done in NC in 1 steps. 

Theorem 4 Given a positive instance of Smooth 
degree-1 IP and a jixed E ,  we can find an NC a 0,l 
assignment to variables xi such that 

~ ( a ,  22,. . . , zn)  I p(z*)  + En2, (13) 

where p is the objective function and p(z*)  is its opti- 
mal value. 

It is clear from the definition of Smooth QP that for 
its optimal value p ( x * )  we have p(x*) 2 Sn’, for some 
positive constant S, and therefore (13) is written as 

p(xl,x2, ...,In) 5 (l + E / S ) P ( 2 * )  

which gives us an approximation scheme. Further- 
more, the overall parallel time is bounded by a poly- 
logarithm in the number of variables n. Thus we get 

Theorem 5 There are NC Approximation Schemes 
for Positive Smooth QP and for bounded degree Posi- 
tive Smooth IP. 

4 Applications 
Smooth QP’s (and more generally, Smooth Integer 

Programs) are strong enough to represent combina- 
torial problems. These programs were recently used 
to obtain Polynomial Time Approximation Schemes 
for dense instances of several NP-hard problems [3], 
however in their formulation, the instances of QP or 

degree-1 Integer Programs are neither positive nor in 
packing/covering form. Thus, we have to  first for- 
mulate them as positive hstances in packing/covering 
form and then apply ouir method. Notice that in all 
our applications the linear restrictions W x  2 d do not 
appear, actually there will appear simply complemen- 
tary ones, i.e., restrictions of type xi + zi = 1.  In this 
section we will derive NCAS for the dense instances 
of the problems MAX ClJT, MAX DICUT and MAX 
2SAT. We also show how to extend the result of MAX 
2SAT for the general case of MAX kSAT on n vari- 
ables. It turns out thLat fix MAX CUT, MAX DICUT 
the condition for the instance to be smooth is equiva- 
lent with that of the graph instance being “dense.” A 
graph instance of n vertices is considered dense if any 
vertex in it has degree O ( n )  and an instance of MAX- 
k-SAT with m clauses over n variables is considered 
to be dense if m = R(n”). 
4.1 

Recall that in a MAX: CUT instance we are given 
an undirected graph G = (V, E )  and we want to  find a 
partition of its vertices V = L U R that maximizes the 
number of crossing edges from L to R. We associate 
to any vertex i E V two 0/1 variables 1; and rj defined 
as follows: lj = 1 (resp. 1-i = 1) if i E L (resp. i E R). 
Now, let us consider the following program for MAX 
CUT: 

MAX CUT and MAX DICUT 

maximize (lirj + Ijri) 
subject to 1i + ri = 1 (14) 

V i  E V. li, ri E (0, l}, 

Clearly, any coefficient in (14) is non-negative. In or- 
der to apply Theorem 2, we still need to transform (14) 
to match its requirements. More precisely, we have 
to (a) transform the restrictions “=” into restrictions 
“5,” i.e., to  write the program in the packing form, 
and (b) the coefficients of the instance should satisfy 
the smoothness condition. As in Subsection 3.1 we 
modify the objective function appropriately and ob- 
tain: 

max 4j C{i , j }EE (1ir.j + Ijri + Ii + lj + ri + r j )  

zj + ri 5 1 
li,rj E (0, I}, 

s.t. 
Vi E V. 

(15) 
As for (a), observe that in (15), the restrictions “=” 
are relaxed to  “5,” yet this does not change the op- 
timal solution since r!i + ri is multiplied by a positive 
constant in the objective function, and since our max- 
imization “forces” that restriction to hold with equal- 
ity. Thus, the optimal solution of both (15) and (14) 
is the same. Finally, for condition (b), first note that 
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the coefficients of the second degree terms are 1, and 
those of the first degree are d i ,  the degree2 of vertex i .  
But notice from the definition of Smooth QP that, in 
the objective function, the sum of first degree terms is 
O(n2) ,  therefore in order for (15) to approximate the 
value of the optimal cut, the sum of the second degree 
terms in the objective function of (15) has also to be 
of order O(n2) .  This is achieved when the number of 
second degree terms is O ( n 2 ) ,  that means if the graph 
instance is dense. At this point we have the connec- 
tion between the density of the graph and smoothness 
of QP instance. Therefore, applying Theorem 2 we 
obtain : 

Theorem 6 There is O R  NCAS for dense znstances 
of MAX CUT. 

The MAX DICUT problem, i.e., MAX CUT for di- 
rected graphs, can be modeled as a Positive QP similar 
to (14). In this case, supposing that the edges of the 
cut are oriented from the left to the right,the modified 
objective function has only second degree terms lirj. 
Therefore, Theorem 6 also holds for MAX DICUT. 
4.2 MAX 2SAT 

In any instance of MAX 2SAT we are given a 
set {Cj}jml of m clauses over n variables z1, . . . , xn, 
where each clause has 2 literals, and we want to find 
a truth assignment to the variables that maximizes 
the number of satisfied clauses. For any variable xi, 
we consider two other 0/1 variables t i ,  fi such that 
t;  = 1 (resp. f; = 1) if the variable xi = true (resp. 
z; = false) and 0 otherwise. Now, we will associate 
a degree-2 term to any clause such that for any as- 
signment of t ; ,  f; that evaluates the term to 1, the 
corresponding assignment of x; evaluates the clause to 
true. The term q, (tl , . . . , t,, f1, . . . , fn) corresponding 
to  clause Cj is constructed as follows. If z; appears 
positively in Cj, then we replace it by fi and by ti 
otherwise, and finally subtract the result from 1. For 
example, from the clause 51 Vx3 we construct the term 
1 - t l f3 .  Therefore, we obtain the following program: 

maximize xj”l qj(t1 , . . . , t,, fi, . . . , f,) 
subject to t i  + fi = 1 (16) 

t ; , f i  E (0, I}, 15 i 5 n 

This program is not positive since the degree-2 terms 
appear negatively 
(as in 1 - t l  f3). By letting q j ( t 1 , .  . . ,in, f 1 , .  . . , f n )  = 
1 - Tj(t1,. . . ,t,, f1,. . . , f,), we can consider instead 
of (16) the program with the objective function, the 

21n fact, instead of d;  we can take any positive coefficient 
that is @(TI). 

sum of the degree-2 terms Tj and take minimization 
instead of maximization, and t.hus (16) is transformed 
into: 

minimize 

subject to 

Cy==, 
ti + fi 2 1 

( t l  , . . . , t, , f l ,  . . . , fn)+ 

(17) 
+ C:”=l &(ti + fz) 
t i ,  f i  E (0, I}, 15 i 5 n 

As in the previous cases we have relaxed conditions 
“=” to conditions “,” by adding to the objective func- 
tion t; + fi multiplied by a positive constant di. In or- 
der for (17) to be smooth we must choose di = O ( n ) .  
Then, any approximation for (17) would yield an ap- 
proximation also for (16) if we let the number of 
degree-2 terms be of order Q(n2) ,  i.e., if we let the 
MAX 2SAT instance be “dense.” Therefore, similar 
to the above, we have 

Theorem 7 There is an NCAS for dense instances 
of MAX 2SAT. 

MAX LSAT. This problem can be modeled by a 
program similar to that of MAX 2SAT (17), but in 
this case Tj( t1 ,  . . . , t,, f i ,  . . . , Jn) is a degree-k term. 
In order for the resulting program to be smooth, 
we have to choose the coefficients d; to be of or- 
der di = O(n”’), and therefore Cy=l di(ti + f;) 
will be of order O ( n k ) .  Consequently, the objective 
function of the resulting program would approximate 
the maximum number of satisfied clauses if the sum 

Tj( t1 , .  . , , t,&, f 1 ,  . , , , fn) has O ( n k )  terms, i.e., if 
the instance of MAX kSAT is dense. Next, from this 
observation, we conclude: 

Theorem 8 There is an NCAS for dense instances 
of MAX ISAT .  

In fact the above result holds also for dense in- 
stances of a restricted version of the MAX SAT prob- 
lem on n variables whose clauses have up to E = 
polylog(n) literals. Indeed, in this case we will have 
a degree4 Integer Program for which the arguments 
of Subsection 3.3 also hold, i.e., the reduction to a 
Smooth QP is done also in NC. 

Corollary 1 There is an NCAS for  dense anstances 
of MAX SAT of clauses on n variables and up to 
polylog(n) literals per clause. 

Open Questions 
Find an NCAS for Positive QP or Positive CQP. 

We believe that the class of Positive Quadratic Pro- 
grams can be used to model and approximate also 
other combinatorial optimization problems. Some 
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candidates in this line are Multiplicity Scheduling 
problems, Minimum Bisection, Minimum Separator 
and possibly others. Finally, it would be interesting to 
find problems that are modeled by Smooth QP with 
linear restrictions. Our applications do not have such 
restrictions. 
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