4 research outputs found

    Rectangular Kronecker coefficients and plethysms in geometric complexity theory

    Full text link
    We prove that in the geometric complexity theory program the vanishing of rectangular Kronecker coefficients cannot be used to prove superpolynomial determinantal complexity lower bounds for the permanent polynomial. Moreover, we prove the positivity of rectangular Kronecker coefficients for a large class of partitions where the side lengths of the rectangle are at least quadratic in the length of the partition. We also compare rectangular Kronecker coefficients with their corresponding plethysm coefficients, which leads to a new lower bound for rectangular Kronecker coefficients. Moreover, we prove that the saturation of the rectangular Kronecker semigroup is trivial, we show that the rectangular Kronecker positivity stretching factor is 2 for a long first row, and we completely classify the positivity of rectangular limit Kronecker coefficients that were introduced by Manivel in 2011.Comment: 20 page

    No occurrence obstructions in geometric complexity theory

    Full text link
    The permanent versus determinant conjecture is a major problem in complexity theory that is equivalent to the separation of the complexity classes VP_{ws} and VNP. Mulmuley and Sohoni (SIAM J. Comput., 2001) suggested to study a strengthened version of this conjecture over the complex numbers that amounts to separating the orbit closures of the determinant and padded permanent polynomials. In that paper it was also proposed to separate these orbit closures by exhibiting occurrence obstructions, which are irreducible representations of GL_{n^2}(C), which occur in one coordinate ring of the orbit closure, but not in the other. We prove that this approach is impossible. However, we do not rule out the general approach to the permanent versus determinant problem via multiplicity obstructions as proposed by Mulmuley and Sohoni.Comment: Substantial revision. This version contains an overview of the proof of the main result. Added material on the model of power sums. Theorem 4.14 in the old version, which had a complicated proof, became the easy Theorem 5.4. To appear in the Journal of the AM

    Représentations des polynômes, algorithmes et bornes inférieures

    Get PDF
    La complexité algorithmique est l'étude des ressources nécessaires le temps, la mémoire, pour résoudre un problème de manière algorithmique. Dans ce cadre, la théorie de la complexité algébrique est l'étude de la complexité algorithmique de problèmes de nature algébrique, concernant des polynômes.Dans cette thèse, nous étudions différents aspects de la complexité algébrique. D'une part, nous nous intéressons à l'expressivité des déterminants de matrices comme représentations des polynômes dans le modèle de complexité de Valiant. Nous montrons que les matrices symétriques ont la même expressivité que les matrices quelconques dès que la caractéristique du corps est différente de deux, mais que ce n'est plus le cas en caractéristique deux. Nous construisons également la représentation la plus compacte connue du permanent par un déterminant. D'autre part, nous étudions la complexité algorithmique de problèmes algébriques. Nous montrons que la détection de racines dans un système de n polynômes homogènes à n variables est NP-difficile. En lien avec la question VP = VNP ? , version algébrique de P = NP ? , nous obtenons une borne inférieure pour le calcul du permanent d'une matrice par un circuit arithmétique, et nous exhibons des liens unissant ce problème et celui du test d'identité polynomiale. Enfin nous fournissons des algorithmes efficaces pour la factorisation des polynômes lacunaires à deux variables.Computational complexity is the study of the resources time, memory, needed to algorithmically solve a problem. Within these settings, algebraic complexity theory is the study of the computational complexity of problems of algebraic nature, concerning polynomials. In this thesis, we study several aspects of algebraic complexity. On the one hand, we are interested in the expressiveness of the determinants of matrices as representations of polynomials in Valiant's model of complexity. We show that symmetric matrices have the same expressiveness as the ordinary matrices as soon as the characteristic of the underlying field in different from two, but that this is not the case anymore in characteristic two. We also build the smallest known representation of the permanent by a determinant.On the other hand, we study the computational complexity of algebraic problems. We show that the detection of roots in a system of n homogeneous polynomials in n variables in NP-hard. In line with the VP = VNP ? question, which is the algebraic version of P = NP? we obtain a lower bound for the computation of the permanent of a matrix by an arithmetic circuit, and we point out the links between this problem and the polynomial identity testing problem. Finally, we give efficient algorithms for the factorization of lacunary bivariate polynomials.LYON-ENS Sciences (693872304) / SudocSudocFranceF
    corecore