351 research outputs found

    Quadratic Goldreich-Levin Theorems

    Full text link
    Decomposition theorems in classical Fourier analysis enable us to express a bounded function in terms of few linear phases with large Fourier coefficients plus a part that is pseudorandom with respect to linear phases. The Goldreich-Levin algorithm can be viewed as an algorithmic analogue of such a decomposition as it gives a way to efficiently find the linear phases associated with large Fourier coefficients. In the study of "quadratic Fourier analysis", higher-degree analogues of such decompositions have been developed in which the pseudorandomness property is stronger but the structured part correspondingly weaker. For example, it has previously been shown that it is possible to express a bounded function as a sum of a few quadratic phases plus a part that is small in the U3U^3 norm, defined by Gowers for the purpose of counting arithmetic progressions of length 4. We give a polynomial time algorithm for computing such a decomposition. A key part of the algorithm is a local self-correction procedure for Reed-Muller codes of order 2 (over \F_2^n) for a function at distance 1/2ϵ1/2-\epsilon from a codeword. Given a function f:\F_2^n \to \{-1,1\} at fractional Hamming distance 1/2ϵ1/2-\epsilon from a quadratic phase (which is a codeword of Reed-Muller code of order 2), we give an algorithm that runs in time polynomial in nn and finds a codeword at distance at most 1/2η1/2-\eta for η=η(ϵ)\eta = \eta(\epsilon). This is an algorithmic analogue of Samorodnitsky's result, which gave a tester for the above problem. To our knowledge, it represents the first instance of a correction procedure for any class of codes, beyond the list-decoding radius. In the process, we give algorithmic versions of results from additive combinatorics used in Samorodnitsky's proof and a refined version of the inverse theorem for the Gowers U3U^3 norm over \F_2^n

    Sampling-based proofs of almost-periodicity results and algorithmic applications

    Full text link
    We give new combinatorial proofs of known almost-periodicity results for sumsets of sets with small doubling in the spirit of Croot and Sisask, whose almost-periodicity lemma has had far-reaching implications in additive combinatorics. We provide an alternative (and L^p-norm free) point of view, which allows for proofs to easily be converted to probabilistic algorithms that decide membership in almost-periodic sumsets of dense subsets of F_2^n. As an application, we give a new algorithmic version of the quasipolynomial Bogolyubov-Ruzsa lemma recently proved by Sanders. Together with the results by the last two authors, this implies an algorithmic version of the quadratic Goldreich-Levin theorem in which the number of terms in the quadratic Fourier decomposition of a given function is quasipolynomial in the error parameter, compared with an exponential dependence previously proved by the authors. It also improves the running time of the algorithm to have quasipolynomial dependence instead of an exponential one. We also give an application to the problem of finding large subspaces in sumsets of dense sets. Green showed that the sumset of a dense subset of F_2^n contains a large subspace. Using Fourier analytic methods, Sanders proved that such a subspace must have dimension bounded below by a constant times the density times n. We provide an alternative (and L^p norm-free) proof of a comparable bound, which is analogous to a recent result of Croot, Laba and Sisask in the integers.Comment: 28 page

    Notes for Miscellaneous Lectures

    Full text link
    Here I share a few notes I used in various course lectures, talks, etc. Some may be just calculations that in the textbooks are more complicated, scattered, or less specific; others may be simple observations I found useful or curious.Comment: 6 pages. New section 6 adde

    Public-key cryptography and invariant theory

    Full text link
    Public-key cryptosystems are suggested based on invariants of groups. We give also an overview of the known cryptosystems which involve groups.Comment: 10 pages, LaTe

    Candidate One-Way Functions and One-Way Permutations Based on Quasigroup String Transformations

    Get PDF
    In this paper we propose a definition and construction of a new family of one-way candidate functions RN:QNQN{\cal R}_N:Q^N \to Q^N, where Q={0,1,...,s1}Q=\{0,1,...,s-1\} is an alphabet with ss elements. Special instances of these functions can have the additional property to be permutations (i.e. one-way permutations). These one-way functions have the property that for achieving the security level of 2n2^n computations in order to invert them, only nn bits of input are needed. The construction is based on quasigroup string transformations. Since quasigroups in general do not have algebraic properties such as associativity, commutativity, neutral elements, inverting these functions seems to require exponentially many readings from the lookup table that defines them (a Latin Square) in order to check the satisfiability for the initial conditions, thus making them natural candidates for one-way functions.Comment: Submitetd to conferenc

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs

    Lower bounds for constant query affine-invariant LCCs and LTCs

    Get PDF
    Affine-invariant codes are codes whose coordinates form a vector space over a finite field and which are invariant under affine transformations of the coordinate space. They form a natural, well-studied class of codes; they include popular codes such as Reed-Muller and Reed-Solomon. A particularly appealing feature of affine-invariant codes is that they seem well-suited to admit local correctors and testers. In this work, we give lower bounds on the length of locally correctable and locally testable affine-invariant codes with constant query complexity. We show that if a code CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally correctable code (LCC), where K\mathbb{K} is a finite field and Σ\Sigma is a finite alphabet, then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr1))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-1})). Also, we show that if CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally testable code (LTC), then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr2))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-2})). The dependence on nn in these bounds is tight for constant-query LCCs/LTCs, since Guo, Kopparty and Sudan (ITCS `13) construct affine-invariant codes via lifting that have the same asymptotic tradeoffs. Note that our result holds for non-linear codes, whereas previously, Ben-Sasson and Sudan (RANDOM `11) assumed linearity to derive similar results. Our analysis uses higher-order Fourier analysis. In particular, we show that the codewords corresponding to an affine-invariant LCC/LTC must be far from each other with respect to Gowers norm of an appropriate order. This then allows us to bound the number of codewords, using known decomposition theorems which approximate any bounded function in terms of a finite number of low-degree non-classical polynomials, upto a small error in the Gowers norm

    QUAD: Overview and Recent Developments

    Get PDF
    We give an outline of the specification and provable security features of the QUAD stream cipher proposed at Eurocrypt 2006. The cipher relies on the iteration of a multivariate system of quadratic equations over a finite field, typically GF(2) or a small extension. In the binary case, the security of the keystream generation can be related, in the concrete security model, to the conjectured intractability of the MQ problem of solving a random system of m equations in n unknowns. We show that this security reduction can be extended to incorporate the key and IV setup and provide a security argument related to the whole stream cipher.We also briefly address software and hardware performance issues and show that if one is willing to pseudorandomly generate the systems of quadratic polynomials underlying the cipher, this leads to suprisingly inexpensive hardware implementations of QUAD
    corecore