3 research outputs found

    Variational Methods and Numerical Algorithms for Geometry Processing

    Get PDF
    In this work we address the problem of shape partitioning which enables the decomposition of an arbitrary topology object into smaller and more manageable pieces called partitions. Several applications in Computer Aided Design (CAD), Computer Aided Manufactury (CAM) and Finite Element Analysis (FEA) rely on object partitioning that provides a high level insight of the data useful for further processing. In particular, we are interested in 2-manifold partitioning, since the boundaries of tangible physical objects can be mathematically defined by two-dimensional manifolds embedded into three-dimensional Euclidean space. To that aim, a preliminary shape analysis is performed based on shape characterizing scalar/vector functions defined on a closed Riemannian 2-manifold. The detected shape features are used to drive the partitioning process into two directions – a human-based partitioning and a thickness-based partitioning. In particular, we focus on the Shape Diameter Function that recovers volumetric information from the surface thus providing a natural link between the object’s volume and its boundary, we consider the spectral decomposition of suitably-defined affinity matrices which provides multi-dimensional spectral coordinates of the object’s vertices, and we introduce a novel basis of sparse and localized quasi-eigenfunctions of the Laplace-Beltrami operator called Lp Compressed Manifold Modes. The partitioning problem, which can be considered as a particular inverse problem, is formulated as a variational regularization problem whose solution provides the so-called piecewise constant/smooth partitioning function. The functional to be minimized consists of a fidelity term to a given data set and a regularization term which promotes sparsity, such as for example, Lp norm with p ∈ (0, 1) and other parameterized, non-convex penalty functions with positive parameter, which controls the degree of non-convexity. The proposed partitioning variational models, inspired on the well-known Mumford Shah models for recovering piecewise smooth/constant functions, incorporate a non-convex regularizer for minimizing the boundary lengths. The derived non-convex non-smooth optimization problems are solved by efficient numerical algorithms based on Proximal Forward-Backward Splitting and Alternating Directions Method of Multipliers strategies, also employing Convex Non-Convex approaches. Finally, we investigate the application of surface partitioning to patch-based surface quadrangulation. To that aim the 2-manifold is first partitioned into zero-genus patches that capture the object’s arbitrary topology, then for each patch a quad-based minimal surface is created and evolved by a Lagrangian-based PDE evolution model to the original shape to obtain the final semi-regular quad mesh. The evolution is supervised by asymptotically area-uniform tangential redistribution for the quads
    corecore