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Foreword
Architecture is the physical realization of geometry, and even today 

architecture poses aesthetic and practical problems for architects, 

engineers, mathematicians and computer scientists to overcome using 

traditional and new mathematical methods. It is 60 years since Computer 

Numerical Control (CNC) machines were first introduced, but now they 

are becoming commonplace in the building industry enabling complex 

designs to be fabricated enabling buildings to be constructed which 

almost rival medieval stereotomy.

There has always been debate in architecture as to the relati-

ve merits of simplicity verses complexity, structural honesty verses 

ornamentation and the advent of computers in the design process 

has if anything confused this issue, especially now that sustainability 

is a major concern. Some architects and engineers mistakenly believe 

that decisions can be left to computational optimization, whereas the 

more one knows about a subject the more one understands that a true 

optimum is a chimaera.

Since its first edition, organized by Helmut Pottmann in 2008, the 

aim of the Advances in Architectural Geometry symposium has been to 

provide a platform for interdisciplinary debate through contributions of 

both technical and theoretical nature. It is hoped that this volume will 

continue this debate and in particular encourage young architects, en-

gineers and computer scientists to enter the world of Euclid, Hypatia, 

Descartes, Gauss and Ada Lovelace.

Lars Hesselgren, Karl-Gunnar Olsson  
Conference Co-chairs 

Axel Kilian, Samar Malek,  
Olga Sorkine-Hornung, Chris Williams  

Scientific Co-chairs

Jonas Runberger, Ahmad Abdul Sater  
Workshop chair, Coordinator 

Morten Lund, Linnea Jansson  
Conference moderator, Coordinator

Toni Kotnik, Mats Ander, Erica Hörteborn 
Communication chair, Coordinators
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Abstract 
Today, architects can conceive an almost infinite variety of complex 

3D geometries using modelling software. However, the realization of 

these geometries is still limited by the capabilities and constraints of 

the fabrication machinery. The modelling platforms used to design the 

geometries are still not able to evaluate fabrication parameters such 

as feasibility and machining time. This makes architects are dependent 

upon fabricator input for introducing fabrication considerations into the 

creative process, so that they can rationalize their designs.

To bridge this gap, we present a near real time method for the 

analysis and evaluation of the fabrication potential of molds for complex 

geometries. Our method can approximate the feasibility, material use, 

and machining time required for the fabrication of molds for concrete 

façade elements. The method was developed for mainstream mold 

fabrication techniques such as cutting and assembly of sheet mate-

rials as well as milling of volumetric material. It was further expanded 

to include robotic hot wire cutting, a state of the art mold fabrication 

technique. 

The method described provides numeric and graphic evaluation 

results for complex geometries in a few seconds. Its high speed makes 

it useful for interactive, fabrication aware design and for computational 

optimization. In this paper, we outline the need for such a method, 

explain its main algorithms and show case studies where it was used 

for design rationalization.

1. Introduction

Contemporary Computer Aided Design (CAD) software enables archi-

tects to design a seemingly unlimited range of geometries. However, the 

Computer Aided Manufacturing (CAM) techniques used to fabricate the-

se shapes are not omnipotent and have many constraints related to the 

physical capabilities of the fabrication machinery or material properties 

(Kilian 2006).  Design for Manufacturing (DFM) is a common practice 

in industrial design, aimed at accommodating machining constraints at 

an early design stage (Liu and Yang 2001). In architecture, accommo-

dating practical fabrication constraints is often referred to as design 

rationalization. Pottman et al. (2015) review contemporary rationalization 
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practices and advocate the introduction of simple simulations of fabri-

cation constraints into architectural modeling systems.  In a more recent 

review, Austern et al. (2018) stress the importance of providing simple, 

parametric rationalization methods which can be performed within the 

architectural design process. 

In this paper, we present the results of a research aimed at deve-

loping a computational method for analyzing geometry at the prelimi-

nary stage of the design process. The method described predicts the 

feasibility of a geometry and the resources needed to fabricate it with 

the digital fabrication techniques most often used in the industry. The 

method was developed into a near real time analysis plugin for the 

Rhino/Grasshopper (RH/GH) parametric environment. A typical analysis 

of a single surface ranges from a fraction of a second to few seconds, 

depending on the complexity of the surface and the number of sampling 

points chosen. This is significantly faster than traditional CAM methods 

which require specialized technicians and software to simulate fabri-

cation, a method which usually takes about an hour. The near real time 

operation of the method makes it possible to incorporate fabrication 

evaluation into the architectural design process.

In the background chapter of this paper, we review rationalization 

in contemporary architectural practice and research as well as mold 

making techniques in the industry, illustrating the gaps in this field. In the 

methods chapter, we describe the main features of our suggested ana-

lysis method, detailing its innovations. In the results section, we discuss 

validation and show use examples. Ultimately, we show how the method 

can be used as a fitness criterion for an optimization algorithm.

2. Background

2.1 Rationalization in the architectural practice

The practice of designing buildings to accommodate available construc-

tion techniques is not new. From Roman temples to Gothic Cathedrals, 

architects traditionally designed with the practicalities of the building 

trade in mind. In the previous century, the works of Nervi, Isler, and Dieste 

pioneered the use of simple construction techniques for achieving 

complex building geometries. In contrast, works like Utzon’s Sidney Opera 
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and Le Corbusier’s Philips Pavilion exhibited complex designs which 

could not be built as the architect originally intended. These designs had 

to be simplified and disciplined in order to be realized (Fischer 2012), a 

practice referred to today as rationalization. 

The contemporary use of the term design rationalization is attributed to 

Glymph, an architect working in Gehry Partners, who described the practice 

of introducing “rules of constructability” into Gehry’s free-form designs 

(Lindsey 2001).  Whitehead further developed the term, describing projects 

he developed in Foster + Partners as either Pre or Post Rationalized, de-

pending on the timing in which geometries were translated into construc-

tible forms (Whitehead 2005). Ceccato, working at Zaha Hadid Architects 

highlighted the importance of Co-Rationalization, the intensive use of 

parametric modeling tools throughout design sequence, in contemporary 

architectural practice (Ceccato 2011). With the widespread acceptance and 

availability of parametric environments over the last decade, this type of 

rationalization has been found to be the one most commonly performed in 

the architectural practice (Austern  et al. 2018).   

2.2 Rationalization in academic research
Shortly after the millennium, one of the main research directions in this 

field focused on developing methods for adapting geometry to different 

types of realization constraints. The largest branch of this research direction 

deals with the rationalization of glazed facades towards constraints re-

lated to glazing systems, often focusing on the creation of Planar Quad 

meshes with certain favorable properties. These studies rely heavily on 

advanced geometry and mathematics and are reviewed in (Pottmann 

2010; Pottmann et al. 2015).  Recent work in this field has highlighted 

the importance of real-time evaluation of design geometry as a basis for 

interactive design and computational optimization (Deng et al. 2015; Tang 

et al. 2014).

Other research focuses on finding methods for accommodating 

constraints related to digital fabrication techniques. Manahl et al. (2012) 

describe a method for translating free-form geometry into plates 

producible by 3-axis milling. Dritsas et al. (2013) describe a method of 

optimizing free-form shells so that its pieces can be optimally packed on 

sheets of material for 2.5D milling. Flory et al. (2013) describe methods 

which translate geometry into ruled surfaces, which are relatively easy 

to build using a variety of techniques, including robotic hot wire cutting. 
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Brander et al. (2016) describe methods related to designing with flexible 

hot blades. Louth et al. (2017) describe how complex structural geometries 

can be rationalized so that they can be assembled from laser kerf-cut, 

bent sheet material. However, all of these methods are focused on a 

single fabrication process, and none of them enable comparing different 

digital fabrication techniques on the same geometry. An exception to 

this is the work of Eigensatz et al. (2010), who propose a façade paneling 

algorithm capable of discerning between the geometry of the panels 

(such as flat, single curved or double curved). However, this method 

does not differentiate between specific fabrication techniques, instead 

classifying all complex double curved panels into a single category. 

2.3 Mold making techniques in the industry
The presented research focuses on rationalizing geometry towards 

the constraints of mold fabrication, focusing on molds for concrete. 

Concrete, the most common building material of our era (CSI 2009), is 

exceptionally suited for producing free-form geometry due to its initial, 

liquid state. In order to realize to the full range of geometries that can 

be produced from concrete, complex 3D molds are required. In the 

industry, these molds are usually manufactured from CNC cut plywood 

sheets, such as the ones developed by Designtoproduction for SANAA’s 

Roles learning center (Scheurer 2010). Alternatively, molds are milled 

from Expanded Polystyrene (EPS) using 3-axis, 5-axis or robotic milling 

setups. This is a precise technique but it is highly time consuming, 

as was reported by TailorCrete project- a joint EU research into 3D 

formwork (Andersen et al. 2016). Another technique which has recently 

gained acceptance into the industry is Robotic hot wire cutting of EPS, 

which has been successfully used by ODICO in building scaled projects 

(Sondergaard and Feringa 2017).   

Due to the large waste of materials and machine time incurred by 

all of these molds, many have attempted to devise alternative fabrica-

tion techniques. Reusable, flexible molds are a promising technology 

reviewed in (Hawkins et al. 2017). Despite the many benefits of this 

technology, the review shows how geometric constraints, modelling 

issues and uncertainty regarding its benefits still prevent the industry 

from adopting this technique. A different solution to the problem is the 

use of 3D printing in concrete to do away with the formwork completely 

(Khoshnevis 2004; Lim et al. 2012). This technique is not fully integra-
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ted into the industry yet, and currently used mostly to create extruded 

geometries, due to the material properties of concrete (Labonnote et al. 

2016). 

To adapt their design to any one of the mentioned techniques, archi-

tects need information regarding its specific fabrication performance. In 

practice, evaluating the fabrication parameters of a geometry involves two 

different stages: a) Manual preparation for fabrication, typically performed 

by a CNC operator, using 3D modeling platforms and dedicated CAM 

software. b) A machining simulation performed by the CAM software, 

which calculates all the points along the machining toolpath. Both of these 

operations are highly time consuming, and not achievable by designers 

within typical 3D modelling environments. This means that in order to 

rationalize a geometry designers must send it over to the fabricator for 

appraisal. The typical tendering structure of architectural projects means 

that this is usually not possible until after the tender has been issued (Ce-

lento 2010). At this point the design has already been finalized and major 

changes due to the rationalization very hard to implement.

In the following section, we will describe a method for evaluating 

geometries in relation to different fabrication techniques, so that they can 

adapt them to the chosen fabrication technique. The method was initially 

developed for different types of milling setups, the most common fabrica-

tion technique in contemporary industry. It was later expanded to cover ro-

botic  hot wire cutting. The modular structure of the method allows future 

expansion to include any technology accepted by the industry. Currently, 

the proposed method can evaluate the fabrication parameters of a single 

surface in less than a second, providing the designer with near real time 

feedback which he can incorporate into the design process.

Figure 1: Structure of the proposed method.



 14 AAG2018  15

Brander et al. (2016) describe methods related to designing with flexible 

hot blades. Louth et al. (2017) describe how complex structural geometries 

can be rationalized so that they can be assembled from laser kerf-cut, 

bent sheet material. However, all of these methods are focused on a 

single fabrication process, and none of them enable comparing different 

digital fabrication techniques on the same geometry. An exception to 

this is the work of Eigensatz et al. (2010), who propose a façade paneling 

algorithm capable of discerning between the geometry of the panels 

(such as flat, single curved or double curved). However, this method 

does not differentiate between specific fabrication techniques, instead 

classifying all complex double curved panels into a single category. 

2.3 Mold making techniques in the industry
The presented research focuses on rationalizing geometry towards 

the constraints of mold fabrication, focusing on molds for concrete. 

Concrete, the most common building material of our era (CSI 2009), is 

exceptionally suited for producing free-form geometry due to its initial, 

liquid state. In order to realize to the full range of geometries that can 

be produced from concrete, complex 3D molds are required. In the 

industry, these molds are usually manufactured from CNC cut plywood 

sheets, such as the ones developed by Designtoproduction for SANAA’s 

Roles learning center (Scheurer 2010). Alternatively, molds are milled 

from Expanded Polystyrene (EPS) using 3-axis, 5-axis or robotic milling 

setups. This is a precise technique but it is highly time consuming, 

as was reported by TailorCrete project- a joint EU research into 3D 

formwork (Andersen et al. 2016). Another technique which has recently 

gained acceptance into the industry is Robotic hot wire cutting of EPS, 

which has been successfully used by ODICO in building scaled projects 

(Sondergaard and Feringa 2017).   

Due to the large waste of materials and machine time incurred by 

all of these molds, many have attempted to devise alternative fabrica-

tion techniques. Reusable, flexible molds are a promising technology 

reviewed in (Hawkins et al. 2017). Despite the many benefits of this 

technology, the review shows how geometric constraints, modelling 

issues and uncertainty regarding its benefits still prevent the industry 

from adopting this technique. A different solution to the problem is the 

use of 3D printing in concrete to do away with the formwork completely 

(Khoshnevis 2004; Lim et al. 2012). This technique is not fully integra-

 14 AAG2018  15

ted into the industry yet, and currently used mostly to create extruded 

geometries, due to the material properties of concrete (Labonnote et al. 

2016). 

To adapt their design to any one of the mentioned techniques, archi-

tects need information regarding its specific fabrication performance. In 

practice, evaluating the fabrication parameters of a geometry involves two 

different stages: a) Manual preparation for fabrication, typically performed 

by a CNC operator, using 3D modeling platforms and dedicated CAM 

software. b) A machining simulation performed by the CAM software, 

which calculates all the points along the machining toolpath. Both of these 

operations are highly time consuming, and not achievable by designers 

within typical 3D modelling environments. This means that in order to 

rationalize a geometry designers must send it over to the fabricator for 

appraisal. The typical tendering structure of architectural projects means 

that this is usually not possible until after the tender has been issued (Ce-

lento 2010). At this point the design has already been finalized and major 

changes due to the rationalization very hard to implement.

In the following section, we will describe a method for evaluating 

geometries in relation to different fabrication techniques, so that they can 

adapt them to the chosen fabrication technique. The method was initially 

developed for different types of milling setups, the most common fabrica-

tion technique in contemporary industry. It was later expanded to cover ro-

botic  hot wire cutting. The modular structure of the method allows future 

expansion to include any technology accepted by the industry. Currently, 

the proposed method can evaluate the fabrication parameters of a single 

surface in less than a second, providing the designer with near real time 

feedback which he can incorporate into the design process.

Figure 1: Structure of the proposed method.
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3. Methods
The first stage of the proposed method uses the Rhino/Grasshopper 

(RH/GH) interface to input a NURBS geometry and key fabrication/

material settings. Following, a dual analysis of the input geometry is 

performed: once as a NURBS surface and once as a half-edge mesh. 

Then, the geometry is translated into molds, according to the material 

and fabrication parameters. In the next stage we introduce an innovative 

approach to estimating machining time by using mathematical approx-

imations to predict the tool path length. This saves significant com-

putational resources in comparison to simulating machine behavior, the 

typical procedure in the CAM industry. Finally, the results are displayed 

both numerically and graphically, detailing the feasibility, machining time 

and material use for any of the chosen fabrication techniques. The gene-

ral structure of the proposed method is described in Figure 1.

3.1 Stage 1: Input and initialization
At the first stage of the proposed method, it accepts single surfaces, 

multiple surfaces or poly-surfaces from the user in NURBS form. Fa-

brication parameters such as design tolerance, available tools, material 

types, and dimensions are set in the GH interface. The user can also 

choose the orientation strategy: No orientation, best fit (for minimizing 

material use), common normal (for mostly flat surfaces) or average 

normal (best vertical tool access for complex geometries). The user then 

sets the sampling precision, which is automatically adjusted for surface 

size and complexity. A major premise behind our method is that analy-

zing the entire surface is not always necessary and that an approxima-

tion based on a point sample can estimate realistic machining behavior 

in a fraction of the calculation time. 

3.2 Stage 2: Geometry analysis
In this stage we use IRIT – a freeform geometric modelling environment 

geared toward development and research (Elber 2016), to provide an 

efficient differential analysis of the NURBS surface. The rhino NURBS 

representation is converted into an IRIT NURBS by a C# plugin we 

developed, which invokes efficient C based IRIT functions directly from 

the GH environment. This provides us a set of computationally efficient 

curvature related values: normals, curvatures, Gaussians, radii and princi-

pal directions for all our sampling points in less than 1/100th of the time 
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required to achieve this by the existing Rhino curvature engine. 

The surface is also translated into a half-edge mesh representation 

whose vertexes are the sampling points described above. This represen-

tation is interrogated to provide further information regarding the local 

conditions around the sampling points. Directed, half edge meshes were 

introduced by Campagna et al. (1998) for improving computation speed 

at the cost of memory and implemented for RH/GH by (Piker 2017). The 

result is a dataset which includes the neighboring indexes, positions, 

influence areas, and normals for each of the sampling points. 

3.3 Stage 3: Mold design
In a traditional design flow, the translation of the architectural form into 

molds is manually performed by a CAD operator at the construction 

stage. To be able to estimate the required fabrication resources, the 

suggested method includes a near real time, automated mold design 

module which can produce single sided “open” molds, or double sided 

closed molds. Figure 2 shows the results of automatic operations 

performed on the same geometry to achieve open molds for different 

fabrication techniques. 

For 2.5 axis sheet material cutting and assembly, we design a “waffle” 

structure to support the mold face, unroll it and nest it onto sheets. For 

milling, the geometry is situated within blocks of EPS material, and its 

borders extruded diagonally to ensure milling access. The intersection 

between the extrusion and the EPS geometry is the actual milling 

volume. For Hotwire operations, we approximate the NURBS geometry 

using piecewise developable ruled surfaces, extending the surfaces 

towards the material boundaries results in a model representing the hot 

wire material removal operation.

Figure 2: Different open molds automatically prepared by the algorithm 
for the same input geometry: cutting and assembly of sheet material 
(left), milling in EPS (center) and hot-wire material removal (right).
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3.4 Stage 4: Calculating feasibility and resources of 
different fabrication techniques

At the core of our suggested method, we use computationally efficient 

mathematical formulas to estimate the fabrication resources needed 

for each fabrication technique. The algorithms presented below were 

either developed for this research or adapted from existing research and 

practice. They have never been used together for estimating machining 

resources by means of a point sample. 

3.4.1 “2.5 axis” cutting and assembly

The feasibility of continuous bent sheet material molds is based on two 

material related properties: bendability and deformability. Bendability is 

defined here as the minimal radius in which a material can bend in one 

direction. For example, it is known that laminated plywood can be bent 

to a radius about two hundred times its thickness (Certiwood 2012). 

Using our already calculated curvature radius it is possible to discover 

areas of a geometry which are too curved to be bent with plywood of a 

given thickness. Deformability is defined here as a material’s ability to 

stretch and compress so that it can achieve bending in two directions 

simultaneously. Experiments suggest that the local Gaussian curvature 

of sampling points on the surface is a strong indicator of the ability to 

deform a flat sheet into its shape. In our experience , there are limits to 

both the Gaussian and the primary local curvatures, beyond which de-

formations are difficult to achieve. The precise values of these limits are 

related to material properties such un-isotropic stretching and bending, 

as well as layering and thickness. They are beyond the scope of the 

current work and will be further explored in the future.

After combing bendability and deformability to obtain a feasibility 

indicator, the mold is unrolled and nested onto material sheets. Effi-

cient, quasi-optimal nesting is achieved using the “Pack-Rat” GH plugin 

(Chatzikonstantinou 2017), a rectangle packing algorithm inspired by the 

extreme points concept introduced in (Crainic, Perboli, and Tadei 2008). 

Eq.1 shows how we approximate machining time(M), by multiplying the 

total length of the geometry’s edges(E) by the number of machining 

passes necessary, which by default is set at the material thickness(T)/

tool diameter(D). Then, we multiply the tool path length by the appro-

priate feed rate(F), arriving at an approximation of the machining time 

for each sheet. The feed rate is calculated using information from a 
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commercial “feeds and speeds” calculator developed by www.CNCcook-

book.com. This calculator provides a reliable, industry accepted standard 

based on material type, cut depth and width, and the tool diameter. 

  (1)

3.4.2 “3 axis” milling of EPS molds

For 3-axis milling spindle accessibility, we use the Z access as an initial 

indication and double check accessible areas with a simplified spindle 

model. The tooltip access calculation uses the principle NURBS curvatu-

re radius of the surface at a given point to predict the maximal diameter 

of tool which can fit into concave areas. In the case of compound poly-

surfaces, the curvature based calculation does not suffice as an access 

measure as it cannot detect tooltip clashes along the intersection cur-

ves. For points on a poly-surface, the tooltip is positioned along the nor-

mal of the surface or the mesh before checking for collisions. However, 

this will not work in points on intersections between two surfaces, as the 

normal in these cases is arbitrarily related to either one of the surfaces, 

or averaged between them. Here, searching along the normals of all of 

the neighboring vertices in the half edge mesh structure will guaranty 

finding the right tool tip position without expensive trial and error.

The milling time calculation is separated into two parts. For the 

rouging tool path length, we contour the milling area derived in the mold 

preparation stage and divide the area of the contours by the roughing 

tool diameter. We can do this because for 2D shapes almost all tool-

paths have approximately the same length (B. H. Kim and Choi 2002).

Figure 3: Flat end finishing in 3 axis milling.
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For finishing flat, horizontal regions we use the full practical distance al-

lowed by a flat tool, as shown in figure 3. To ensure overlap, the practical 

offset step is slightly smaller then twice the tool radius (R). This gives us 

the exact shape where the scallop height h=0.

Figure 4: Offset step (O) in ball end 3-axis finishing.

For any other type of surface, we use ball end finishing. As shown in 

figure 4. the offset step in this case is determined by three factors: the 

tool radius (R) which we already calculated, the surface inclination (θ), 

and the required precision or scallop height (h) which is set by the user. 

The offset step can be developed from a formula suggested by  (Han 

and Yang 1999), taking into account that (h2-->0):

 (2)

After calculating each sampling point on the surface, we divide the 

vertex influence area by the offset, summing the results to estimate the 

minimal Iso-scallop tool path length. Now, we can again use information 

from the feeds and speeds calculator to arrive at the machining time.

3.4.3 “5-7 Axis” milling of EPS molds

For more advanced milling setups (including robotic milling), we use the 

following: For accessibility calculations, our algorithm considers a radial 

 20 AAG2018  21

3D array of approaches to every point, until one is located, or all allowed 

approaches disproved. In areas where the access direction is not close 

to the surface normal, this is the most computationally expensive part of 

our algorithm. 

For approximating machining time, we use the same type of roughing 

calculation we did for 3 axis milling. For finishing, we use tilted flat end 

milling, due to its ability to adapt the practical radius of the tool to the 

surface curvature. This type of milling, also called curvature matched 

machining, is more effective at surface finishing than ball end milling 

(Jensen 1993). Coupled with a gauging detection algorithm such as  

(Y. J. Kim et al. 2015) local gauging can be completely eliminated. For 

determining the path length of this type of milling, we calculate the local 

step offset in relation to the geometry of a minimally tilted flat end mill. 

As we are ready to accept lower precision in favor of near real time 

operation, we use the following abstractions in our calculations:

Figure 5: curvature matched milling of concave surfaces.

In concave areas we assume that the cutting direction is orthogonal to 

the largest principal curvature, because it is potentially more effective. 

Furthermore, the cutting tool is tilted along the same principal curvature 

direction to match the tool curvature to the surface curvature at the 

contact point. Figure 5 center shows a section orthogonal to the cutting 

plane thru the surface normal. (O) is the offset step, (h) the allowed 

scallop height, (R) is the tool radius, (A) and (B) ellipse constants, and 

(r) the normal curvature radius of the surface in the direction orthogonal 

to the tool path (i.e. figure 5 center). At the scallop point X=O/2, figure 

5 right shows that h is roughly the difference between the distance of 

the tangent plane at the contact point and the cutter ellipse (he) and 
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the distance of the tangent plane and the surface (hc). For the distance 

between the tangent plane and the ellipse Y= he, while having A = R:

  (3)

For the distance between the tangent plane and the original surface, 

A=B=r, Y=hc:

  (4)

Solving, we find that:

  (5)

  (6)

Expanding h = he-hc and assuming O/A << 1 and O/r << 1, we find that 

the fourth order tailor expansion is:

 

 (7)

The quadratic term can be eliminated by choosing B=R2/r. We are left 

with:

  (8)

And for R << r we find that

  (9)

And since we must have O < 2R

  (10)
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Figure 6: curvature matched milling of convex surfaces.

For parabolic single curved areas, we assume the milling direction is 

orthogonal to the vanishing principle curvature direction and use the full 

practical distance allowed by the tool, achieving h=0, see figure 6 left. In 

convex double curved surfaces, we assume that the milling direction is 

orthogonal to the principal curvature direction. Hence, we use the same 

development we used in ball end milling of flat surface (eq. 2), only now 

we exchange the role of the tool and the surface as shown in figure 6 

right, arriving at: 

  (11)

3.4 Robotic hot-wire cutting
For determining hot-wire accessibility we begin by disqualifying points 

with a concave double curvature, as a straight wire cannot access them. 

Then, we rotate a line around the remaining sampling points until access 

is discovered. We use the secondary curvature direction calculated in 

the analysis stage as a starting direction, as experiments have shown 

that this saves us significant search time. For path length approximation, 

we use a piecewise developable approximation of the original geometry, 

which is based on (Elber and Fish 1997). The resulting surfaces are 

extended towards the material boundaries and their length multiplied by 

the hotwire speed. The algorithm used is based on the UV directions of 

the surface and does not take into account the access direction. In the 

future, a ruled surface approximation method which takes accessibility 

into account should be developed.
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Figure 7: Analysis result, input geometry (top) and evaluation of  

different fabrication techniques (bottom).

3.5 Stage 5: Result display

Figure 7 shows the results of applying our method to a complex 3D sur-

face. The graphic component of the analysis shows unfeasible areas in 

red, while other colors denote feasible areas, according to the fabrication 

technique. Each graphic is accompanied by 3 numeric scores repre-

senting feasibility, material use and machine time. Running on a regular 

laptop, the results in figure 7 were achieved in just under a second for 

the surface, sampled at 1500 points. The speed of the analysis allows the 

designer to interactively adjust the geometry until it satisfies the require-

ments of the chosen fabrication strategy.

4. Result calibration and case study 

To calibrate our predictions, we prepared a large amount of samples 

for milling in a professional CAM software used by the 3 axis CNC in 

our lab. So far, we have seen a good correlation between the predicted 

results and results obtained by a full scale CAM machining simulation . 

Figure 8. Left shows a series of single surfaces which were prepared for 

milling using ALPHACAM 2014 and compared to the predictions of our 

method.
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Figure 8: Some of the shapes used for testing our method: planar and 
single curved surfaces(left), double curved surfaces(center), and poly-
surfaces (right).

In our benchmark test, the diferences between the estimated machine 

time and the actual milling time ranged between -/+ 5 % with an avera-

ge of 1.1 %. The prediction time of our method was between one to three 

seconds for all the single surface geomtries (for a ~1500 point sample 

on the surface). In comparison, preparing the geometry for fabrication in 

the CAM software and running a machining simulation averaged at 35 

minutes for the same geometries. 

In a different set of tests, a series of complex poly-surfaces, shown 

on the right of fi gure 8, were analysed with our method. These predic-

tions took slighlty longer (3–5 seconds for a 1 000 point sampling size) 

but achieved similar precision to the single surfaces in terms of fabrica-

tion time. Additionally, our feasbilty prediction was correct for over 99 % 

of the analysed points, compared to both human judgement and the 

predictions of proffessional CAM software. 

In the future, we need to further test our method by comparing 

its predictions with data obtained from the robotic fabrication setup 

currently being installed in our lab, and with data from commercial mold 

fabrication companies. 

We have also tested a possible use for our method by manually 

rationalizing complex façade tiles, designed to increase turbulence on 

the building surface according to (Grobman and Elimelech 2015; Hersh-

covich et al. 2017). As shown in fi gure 9, we used our method to analyze 

the original design, indicating areas which could not be fabricated using 

a 3 axis CNC mill with an 8 mm round fi nishing tool. Manually adjusting 

these areas eliminated the problems and shortened the fabrication 
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time by 30 %. We milled the mold for this prototype, cast concrete into 

it and demolded the result to demonstrate an entire design  fabrication 

process assisted by our method. 

Figure 9: Manual Rationalization process – original geometry (left), 
rationalized and fabricated result on (right).

5. Future development: Fitness criterion 
for optimization
To study the potential of our method as an optimization criterion, we 

used it to adapt a complex geometry to different fabrication techni-

ques. We used two different “black box” solvers available for the RH/

GH environment: “OPOSSUM”, a machine learning, model-based solver 

(Wortmann 2017), and “GOAT”, a gradient-based solver developed by 

www.rechenraum.com. These general solvers are ideally suited for use 

with our method as they rely on a single fitness criterion – any one the 

feasibility  or resource score evaluated. Using general purpose solvers 

demonstrated the flexibility of our method, which can be easily adapted 

to any type of optimization method available to the designer.

In our case study we balanced the feasibility score for the different 

techniques with the change from the original surface, measured as the 

average distance from the original surface, normalized by the diagonal 
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size. Thinking of the panels as a part of a series, the borders of the 

geometries were further constrained to prevent any movement outside 

of the Z axis. 

We conducted thirty optimization attempts on five different surfaces, 

limiting the running time to 10 minutes and the solvers to 1 000 iterations. 

In these tests we were able to improve the feasibility score by an average 

of 8 % , while the change in in the geometry was kept at 1 %. Figure 10 

shows the best results of the different optimization runs performed on 

the surface shown in Figure 7. Each column represents a different opti-

mization, targeted at a specific fabrication technique. 

Figure 10: Optimization case study, each column is optimized towards a 
different fabrication technique.
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6. Conclusions
In this paper, we have outlined the development of a unique analysis 

method, aimed at evaluating the fabrication of molds for concrete façade 

elements. The main contribution of the suggested method is in providing 

architects with fabrication related information which was never made av-

ailable to them. This will improve their digital craftsmanship (McCullough 

1996), helping them to achieve more complex designs within practical 

limitations. The proposed method can be used to determine the best 

fabrication technique for a given design. Alternately, it can be used as 

an expert system, helping architects as well as fabricators to rationalize 

geometry towards a specific fabrication technique. We have also shown 

that due to its relatively high speed, our method has the potential to be 

used as the basis for an optimization mechanism which automatically 

adjusts geometries towards specific fabrication goals. 
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Abstract
Designing freeform architectural surfaces with due regard to economic 

and feasibility factors is a challenging task. Rationalizing such surfaces 

by means of quadrilateral meshes following principal curvature lines 

has proven to be beneficial for manufacturing reasons, such as planar 

cladding panels and simplified substructure connections. On the other 

hand, for structural efficiency, it is convenient to ensure static equili-

brium in the load bearing structure through axial forces only. It turns 

out that both of these goals can be reached for surfaces in membrane 

equilibrium where principal stress and curvature directions coincide. In 

this paper, we present a method for the optimization of a given shape 

towards stress and curvature alignment, within a workflow for the de-

sign of principal meshes in equilibrium. Our method can be applied to 

shapes without any geometric or topological limitation.

1. Introduction

Motivation. Principal meshes are discrete versions of principal curvature 

parametrizations of surfaces. This kind of meshes is particularly suitable 

in architecture for several reasons. First of all, faces are planar and then 

easily manufacturable. Moreover, the network lines are as orthogonal as 

possible and admit the disposition of prismatic beams that meet in the 

nodes with minimized geometric torsion, reducing significantly the com-

plexity of connections. On the other hand, the edges of these meshes 

are charged to bear the loads within the structure. It is well known that 

the most effcient manner of bearing loads in a framework is through 

strictly axial forces. This allows the beam cross section to be used to 

the highest capacity and at the same time to offer the highest stiffness. 

Principal meshes in axial force equilibrium provide an appealing solution 

for the discretization of freeform architectural surfaces. However, prin-

cipality and equilibrium of quad meshes turn out to be often conflicting 

goals. It is of interest then to provide computational tools that enable 

to embody geometric and static optimization since the earliest design 

stages.

Previous work. A significant step in mesh optimization for 

equilibrium comes from thrust network analysis, introduced by Block and 

Ochsendorf (2007). Vouga et al. (2012) provide a differential geometric 
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Figure 1: Architectural surfaces discretized with principal meshes in 
equilibrium, achieved thanks to stress and curvature alignment. Cladding 
can be realized with flat panels, and the substructure with prismatic beams 
and torsion-free nodes. At the same time, structural bending effects are 
minimized. The top mesh discretizes a non-height field shape.
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understanding of this approach and use it for the design of planar 

quad meshes in equilibrium. An effcient optimization of quad meshes 

for equilibrium and face planarity is provided by Tang et al. (2014), but 

the success of this method is strongly dependent on the initial mesh 

connectivity. Schiftner and Balzer (2010) propose a method for planar 

quad-remeshing of given surfaces, initialized by principal stress lines. 

However, the effectiveness of this method is limited, since for a general 

surface, planarity of quads and the alignment with principal stress 

directions are often conflicting goals. A first attempt to directly design 

principal meshes in equilibrium was made by Sun (2016), fixing the mesh 

combinatorics in advance. Unfortunately, this approach rarely yields good 

convergence of optimization. 

The design of principal meshes in equilibrium is addressed in (Kilian 

et al., 2017), thanks to the alignment of principal curvature and stress 

directions and a subsequent quad-remeshing. However, the applicability 

of this method is restricted to height field shapes. We refer to the latter 

paper for further literature. For an introduction to principal meshes in 

architecture, we refer to (Pottmann et al., 2015).

Our contribution. It turns out that principal meshes in equilibrium 

are a discretization of membrane surfaces with coincident stress and 

curvature directions. In this paper, we propose a method for the optimi-

zation of a given shape towards stress and curvature alignment, within 

a workflow for the design of principal meshes in equilibrium. Relying 

on a discrete-continuous analog, we discretize a given surface with a 

triangular mesh, enforcing the equilibrium on its edges, and we estimate 

an equivalent membrane stress and curvature. We overcome in this way 

the shape limitations of (Kilian et al., 2017). Once the shape is optimized 

for stress and curvature alignment, we generate a quad mesh along the 

resulting directions that is post-optimized for force equilibrium and face 

planarity. Thanks to our initialization, we can expect convergence with 

minimal changes. It is noteworthy that mesh connectivity and geometry 

are both part of our solution.

2. Membranes and gridshells

This paper deals with meshes in equilibrium under axial forces and sub-

ject to vertical loads. We consider self-weight, dead, and static live loads 
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lumped in forces and applied in the vertices. The resulting framework 

structure is a gridshell truss: a system of straight beams, with axes 

corresponding to the edges of the mesh, connected together and to the 

supports with frictionless pin-joints. In this paper, we refer to this model 

as gridshell. We point out here that this kind of structure, depending on 

its geometry, connectivity and support conditions, might be a mecha-

nism in equilibrium. However, even if in an actual gridshell the nodes are 

manufactured as rigid joints for stability and safety reasons, the use of 

a truss model in the design stage is strongly beneficial for minimizing 

bending effects.

Let us consider now a refinement process that increases the 

density of a gridshell truss. From a mechanical point of view, at the 

limit of refinement the gridshell will tend to a membrane: a surface-

like continuum that cannot support out of plane bending, and with 

mechanical properties derived at each point from the thickness in the 

normal direction. At the same time,  the axial forces in the beams will 

tend to the membrane stress. For a detailed description of gridshells 

approaching membranes, we refer to (Mitchell, 2013).

In this paper, we rely on a discrete-continuous analog based on 

this refinement process to describe principal meshes in equilibrium. In 

the following of this section, we introduce the computational setting of 

continuous and discrete equilibrium, namely membranes and gridshells. 

2.1 Membrane equilibrium
Let us consider a membrane M  given by a regular surface. Away from 

points with a vertical tangent plane, we parametrize the surface locally 

as a height function M (x,y) = (x,y,z (x,y)). If we consider only vertical 

loads, it is convenient to express equilibrium in the global coordinate 

system (x,y,z), with a vertical z axis. Let S̄ be the tensor representing 

the xy projection of the membrane stresses. The horizontal and vertical 

equilibrium, respectively, are expressed by

Here divergence of a matrix is applied to its columns, and ρ (x,y) is the 

vertical load per unit xy area (Angelillo and Fortunato, 2004; Vouga et al., 

2012).
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The horizontal component of the equilibrium can be expressed by the 

existence of an Airy stress potential ϕ (x,y). The stress tensor S̄ is then 

given by the adjoint Hessian of ϕ :

where with comma we denote partial derivatives, and with over-tilde the 

adjoint matrix operation. Let  be the first fundamental form of M (x,y). 
The principal stresses are then given by the eigenvalues of   

where . The corresponding eigenvectors define the principal 

stress directions of M (x,y). For further details we refer to (Kilian et al., 

2017).

We can consider the Airy stress potential as a surface z = ϕ (x,y) in 

isotropic space. This is a 3D space with a preferred direction along the 

z axis, and where distances are measured in the xy plane. The Hessian 

of ϕ plays here the role of shape operator, and its eigenvalues are the 

isotropic principal curvatures. These correspond to the eigenvalues 

of S̄  along the swapped eigenvectors. For an introduction to isotropic 

geometry, we refer to (Pottmann and Liu, 2007).

2.2 Gridshell equilibrium
Let M be a three dimensional gridshell truss, with members correspon-

ding to the edges of a mesh. We consider vertical loads applied in the 

vertices vi = (xi , yi, zi) and support conditions given along the boundary. 

The force fi j exerted by the oriented bar ei j = vi – vj on the vertex vi 

can be expressed as wi j (vi – vj), where wij  is the axial force per unit 

bar length or force density, and where positive values of wi j indicate 

compression. Let Ai  be the area of influence at vi . If the system is in 

equilibrium, at each unsupported vertex vi the horizontal and vertical 

force balance gives, respectively,

 where v̄i , v̄j are the xy projections of the points vi , vj , and ρi is the 

vertex-wise load per unit area. With j ~ i we denote all the vertices j 
connected with the vertex i.
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Figure 2: Gridshell equilibrium. (a) A portion of a gridshell M under 
vertical load and its projection into the xy plane  M̄ . (b) The horizontal 
equilibrium yields a force dual mesh   M̄*with edges given by the forces 
acting in the correspondent primal edges of  M̄ rotated by 90 degrees, 
as shown by Maxwell (1872). We can construct an Airy polyhedron Φ 
with face gradients given by the coordinates of the corresponding dual 
vertex of  M̄*. (c) By construction, the magnitudes of the forces in the 
bars v̄i – v̄j are given by the isotropic angles between the adjacent faces 
on Φ. The isotropic angle can be seen as the change in slope between 
two faces of Φ when traversed orthogonally to v̄i – v̄j .

Let us now consider the projection of the structure in the xy plane, de-

noted as  M̄ . Let f̄i j be the xy projections of the forces fi j. Since   M̄ is a 

2D system in  horizontal equilibrium under boundary loads (given by the 

xy projections of the  support reactions), the forces f̄i j acting on each 

vertex v̄i can be arranged in a  planar closed cycle. We can build thus 

a reciprocal diagram  M̄*, combinatorially  dual to  M̄ , whose edges are 

given by the forces acting in the corresponding primal  edge. For conve-

nience, we represent this dual diagram rotated by 90 degrees  clockwise 

in the xy plane, as shown in Figure 2b.

We can now construct a polyhedral stress potential Φ = (x,y,ϕ (x,y)), 
whose edges and vertices coincide in the xy projection to the primal 

truss  M̄, in the following way. Let us denote as fk the faces of Φ, and let 

v̄* k = (x* k , y* k ) be the corresponding dual vertices of  M̄. Hence, each face 

fk of Φ lies on a plane with gradient . The closure of 
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each face of  M̄* ensures the closure of the polyhedron Φ turning 

around the corresponding primal vertex. This construction is uniquely 

defined up to vertical translations and shearing. For further details we 

refer to (Fraternali, 2010) and (Vouga et al., 2012).

Let fk , fl be the faces of Φ meeting at the oriented edge with projection 

ēi j, as shown in Figure 2c. The force f̄i j , by construction, is given by 

,  where  is the 90 degrees counter-

clockwise rotation matrix in the xy plane. Denoting the xy unit edge 

vector as , the quantity

is the signed isotropic angle between the faces fl and fk. Positive values 

of β is( ēi j ) indicate compression in the bar ei j. Note that  

β is(ēi j) = β is(ēi j).

3. Principal meshes in equilibrium

In this section we describe principal meshes in equilibrium under vertical 

loads. In  Section 3.1, we show that these meshes are discretizations of 

special surfaces in  membrane equilibrium, where principal directions of 

stress and curvature coincide.  In Section 3.2, we first show how a mem-

brane can be conveniently discretized with  a triangular gridshell, enfor-

cing the equilibrium on its edges. Then, we describe how  to evaluate an 

equivalent stress tensor on a triangular gridshell and how to align  the 

resultant principal directions with those of curvature. Finally, in Section 

3.3,  we outline our workflow to design principal meshes in equilibrium.

3.1 Principal stress and curvature alignment
Principal meshes are a discretization of the network of principal curva-

ture lines  of a continuous surface. A principal mesh in equilibrium, from 

a mechnanical  point of view, is a gridshell with a quad combinatorics. At 

the limit of refinement,  this gridshell will tend to a principal network of 

curves on a continuous surface in  membrane equilibrium.

Let M (x,y) be a membrane under vertical load, parametrized as a 

height field  surface over the xy plane, as described in Section 2.1. Let 
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special surfaces in  membrane equilibrium, where principal directions of 

stress and curvature coincide.  In Section 3.2, we first show how a mem-

brane can be conveniently discretized with  a triangular gridshell, enfor-

cing the equilibrium on its edges. Then, we describe how  to evaluate an 

equivalent stress tensor on a triangular gridshell and how to align  the 

resultant principal directions with those of curvature. Finally, in Section 

3.3,  we outline our workflow to design principal meshes in equilibrium.

3.1 Principal stress and curvature alignment
Principal meshes are a discretization of the network of principal curva-

ture lines  of a continuous surface. A principal mesh in equilibrium, from 

a mechnanical  point of view, is a gridshell with a quad combinatorics. At 

the limit of refinement,  this gridshell will tend to a principal network of 

curves on a continuous surface in  membrane equilibrium.

Let M (x,y) be a membrane under vertical load, parametrized as a 

height field  surface over the xy plane, as described in Section 2.1. Let 
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us then consider the  principal network of curves of M (x,y), defined at 

each point by two tangent vectors a1 and a2 , and let ā1 and ā2  be their 

xy projections. We are now looking for simple  conditions which express 

that the principal network is in equilibrium.

First, for principal curve networks, the vectors a1, a2  follow principal 

curvature directions. These directions are orthogonal on the surface. 

With  as first fundamental form of M (x,y), we can express the 

orthogonality condition of a1, a2  as

  

Secondly, as seen in Section 2.2, if a gridshell is in equilibrium under 

vertical loads,  its xy projection must admit an Airy polyhedron Φ with 

planar faces. At the limit of refinement, the polyhedron Φ will tend to 

a continuous stress surface z = ϕ (x,y).  For a quadrilateral gridshell, 

the corresponding Airy polyhedron is a quad mesh with  planar faces. 

It is well known that a planar quad mesh, at the limit of refinement,  will 

converge to a network of conjugate curves on a surface (Liu et al., 

2006). We  can then state the following condition: a quad network on a 

surface is in horizontal  equilibrium under vertical load if it is vertically 

projected onto a conjugate curve  network on the corresponding Airy 

stress surface. The condition for the directions a1, a2  to be vertically 

projected onto conjugate directions of ϕ (x,y) is expressed by

  

As shown in (Kilian et al., 2017), Equations (3) and (4) imply that the 

vectors ā1, ā2  are eigenvectors of . Since the principal stress 

directions on  M (x,y) are given by the eigenvectors of , we 

can see that the only directions  in horizontal equilibrium and orthogonal 

on the membrane are the principal stress  directions. Therefore, we can 

state the following important fact:

Proposition 1. Principal meshes in equilibrium under vertical loads 

are discrete representations of membrane surfaces where principal 

stress and principal curvature directions agree. There, they follow these 

principal directions.
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3.2 Estimating stress and curvature

As seen in Section 2.1, at each point of a membrane we find three 

unknown stress  components and three equilibrium equations. Membra-

nes are then statically determinate in the sense that, given the loads and 

the boundary tractions, the stress  tensor is uniquely determined; the 

existence of a solution depends only on the  membrane geometry. Let 

us now consider a triangular gridshell forming a closed  polyhedron 

of genus zero, and with loads applied in its nodes. Denoting by v its 

number of vertices and e its number of edges, Euler’s formula shows 

that  3v = e + 6. Since we have one unknown axial force per edge and 

three equilibrium  equations per vertex, the solution is uniquely determi-

ned up to rigid body motion;  the existence of the solution depends on 

the geometry of the polyhedron. The  same is true for a portion of , 

given the force reactions of the remaining part. Triangular gridshells can 

therefore reproduce the statical determinacy of membranes, see 

(Pavlovi, 1984). In the following, we express membrane behavior of a 

surface  through the equilibrium of a gridshell triangulation.

In the continuous membrane, the projected stress tensor and the 

isotropic shape  operator are related by . We are now 

searching for a discrete analog  of the isotropic shape operator defined 

for triangle meshes, and at first look at  the Euclidean counterpart. For 

that, we use the normal cycle approach by (Cohen- Steiner and Morvan, 

2003). One computes an extended shape operator W (3 × 3  matrix 

with two eigenvectors in principal curvature direction and the third 

eigenvector, with eigenvalue close to zero, orthogonal to the surface) as 

follows. Selecting  a vertex vi and a surrounding region Ri of area Ai , W 

is found by  

  

Here β (ei j) is the signed Euclidean angle between the two normals of 

the faces adjacent to the edge  is the portion of the edge ei j 

intersecting the region Ri and êi j is the unit edge vector, given by 

. The eigenvalues of  W (vi), associated with the two 

eigenvectors lying in the tangent plane at vi , will  give an estimation of 

principal curvatures along the swapped tangent eigenvectors.  To obtain 

a discrete isotropic shape operator, we have to replace Euclidean 
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quantities by isotropic ones. This means that lengths and areas are 

measured in the xy plane and the Euclidean angle β (ei j) is replaced by 

the signed isotropic angle , given by Equation (2). Setting 

, we can estimate the 2 × 2 adjoint Hessian of Φ at as

Observing that  , we can estimate 

the stress tensor directly through force densities as

To estimate the principal curvature directions on the triangulated surface 

we use again Cohen-Steiner Equation (5). For sufficiently smooth meshes, 

we can make the approximation β ≈ sin β . With  as the unit 

normals of the left and right faces of the edge ei j , we can then estimate 

the 3 × 3 extended shape operator as

 Let κ1 and κ2 be the eigenvalues of W corresponding to the two eigen-

vectors in  the tangent plane of M. We can ensure the alignment of two 

vectors a1 , a2 with  principal directions at each vertex vi by requiring 

 

3.3 Workflow
We have now the elements to design principal meshes in equilibrium. 

In particular,  we solve this problem: Given an initial surface subject to 

gravitational load and its support conditions, find a quadrilateral mesh 

in force equilibrium with edges aligned  along principal curvature 

directions that is close to the initial design surface. Our procedure can 

be summarized in the following steps:

Step 1. Given an input surface as a triangular mesh and the sup-

port conditions, we  optimize the mesh geometry in order to align the 
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equivalent stress and curvature  directions as described in Section 3.2, 

while keeping the vertices as close as possible  to the input shape. The 

development and implementation of this step is the main  contribution of 

this paper. 

Figure 3 : Design workfl ow. (a) An initial shape is given as triangular 
mesh and the  equilibrium is enforced on the edges. (b) The estimated 
curvature and stress directions, in general, are not aligned. (c) After our 
optimization, we reach the alignment with a change in the shape. (d) We 
remesh the resulting shape with mixed integer quadrangulation along  
the computed directions. After a post-optimization, the structure is in 
equilibrium under axial forces, (e) and panels are close to planar. Accor-
ding to a fi nite element analysis, the ratio of internal elastic work wa due 
to axial forces in the fi nal structure is 0.95. The stress  and curvature 
directions are scaled according to their anisotropy, given by the difference 
between the two eigenvalues. A possible application of this design is 
depicted in Figures 1 and 7. 

Step 2. We use the resulting directions as guide for a quadrilateral 

remeshing of the  optimized mesh. At this purpose we use mixed integer 

quadrangulation proposed  by (Bommes et al., 2009). In this step, the 

density of the mesh can be chosen according to fabrication and design 

considerations.  

Step 3. The obtained quadrilateral mesh is subject to post-opti-

mization for equilibrium and planarity of faces, while applying some 

fairness to the network curves to guarantee aesthetic quality. For this 

purpose, we use the method of (Tang et al., 2014). Thanks to step 1, we 

can expect convergence with minimized confl ict between planarity and 

equilibrium.
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4. Implementation
In this section we briefl y describe the implementation of step 1, descri-

bed in the workfl ow Section 3.3. Starting from a given triangular mesh 

M 0 with specifi ed support conditions, we fi nd a mesh M  where principal 

stresses and principal curvature  directions are aligned, as close as 

possible to M 0. 

Main variables and constraints. For a mesh M 0 with v vertices and 

e edges, being  s and c respectively the number of vertices that are 

mechanically supported, and fi xed during the optimization, the main 

variables of the problem are:

 » the position of the vertices vi of M (3(v – c) variables)

 » the force densities wi j = wji (e variables)

 » the components of the stress tensor S̄11, S̄22 and S̄12 (3v variables)

 » the components of the extended shape operator 
W11,W22,W33,W12,W23 and W13 (6v variables)

Figure 4 : Results. A high-genus principal mesh in equilibrium. Finite 
element analysis showed an axial work ratio wa of 0.89. On the left, the 
starting mesh M0 is shown.
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 » the tangent eigenvalues κ1 and κ2 of the extended shape operator 
(2v variables)   

 » the directions a1 and a2 at vi (6v variables).  

The main constraints are:   

 » the equilibrium at unsupported vertices vi through Equation (1)  
(3(v – s)  equations)   

 » the connection of the stress tensor components with force densities 
through  Equation (6) (3v equations). Since we are interested only in 
principal directions, we can omit  Āi from the equations. 

 » the connection of the curvature components with face normals 
through Equation (7) (6v equations). As for the previous point, we 
omit Ai. 

 » the normalization of directions: a1
T a1 = 1 and a2

T a2 = 1  
(2v equations)

 » the tangency of directions (tangency is guaranteed together with 
principal direction alignment, see below): (a1 + a2)

Tni = 0  
(v equations) 

where ni is the vertex normal at vi . The target functions are given by 

the alignment  equations of the vectors a1, a2 with stress and curvature 

directions, as seen in  Sections 3.1 and 3.2. We have then: 

 » conjugacy on the Airy surface: (v equations)  

 » principal direction alignment:  and  
(6v equations).

For proximity to the starting surface, we minimize the distance between 

the points  vi and the tangent plane of their closest vertex v0
j of M0. We 

point out here  that the projected stress tensor S̄ is not properly defined 

for surface points with  a vertical tangent plane. To avoid noise in the 

solution, we remove the target  functions of Airy conjugacy on vertices vi 

where the z coordinate of the normal ni  is in the range .

Counting degrees of freedom. Subtracting the number of constra-

ints from the number of variables, and keeping fixed during the optimi-

zation the supported vertices (then s = c), we find 5v + e degrees of 

freedom. The target functions of  alignment yield 7v equations. Conside-
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 » the connection of the curvature components with face normals 
through Equation (7) (6v equations). As for the previous point, we 
omit Ai. 

 » the normalization of directions: a1
T a1 = 1 and a2

T a2 = 1  
(2v equations)

 » the tangency of directions (tangency is guaranteed together with 
principal direction alignment, see below): (a1 + a2)

Tni = 0  
(v equations) 

where ni is the vertex normal at vi . The target functions are given by 

the alignment  equations of the vectors a1, a2 with stress and curvature 

directions, as seen in  Sections 3.1 and 3.2. We have then: 

 » conjugacy on the Airy surface: (v equations)  

 » principal direction alignment:  and  
(6v equations).

For proximity to the starting surface, we minimize the distance between 

the points  vi and the tangent plane of their closest vertex v0
j of M0. We 

point out here  that the projected stress tensor S̄ is not properly defined 

for surface points with  a vertical tangent plane. To avoid noise in the 

solution, we remove the target  functions of Airy conjugacy on vertices vi 

where the z coordinate of the normal ni  is in the range .

Counting degrees of freedom. Subtracting the number of constra-

ints from the number of variables, and keeping fixed during the optimi-

zation the supported vertices (then s = c), we find 5v + e degrees of 

freedom. The target functions of  alignment yield 7v equations. Conside-



 48 AAG2018  49

ring that on a triangle mesh we have e ≈ 3v,  we are left with approx-

imately v degrees of freedom. This allows us to ask for closeness to the 

reference shape as a soft constraint.

Solver. For the optimization, we use the guided projection method of 

(Tang et al., 2014). This method works best for systems of quadratic 

constraints. To reduce  the degree of the main constraints when higher 

than two, we introduce secondary variables that are quadratic functions 

of the main ones; then, these functions are  added as constraints. Let us 

rearrange all the variables, in number of V, in the  vector  . Let 

then , be the equations given by the  

constraints and the target functions. It is possible to add more or less 

importance to  a specific constraint or target function by multiplying the 

corresponding equations  by a weight ωn. The system is solved iterative-

ly. At each iteration k, given  the current variable vector xk, each equation 

is linearized with a 1st order Taylor  expansion:

The linearized system of weighted equations can be rearranged in matrix 

form as Hx = r, with  and . To guarantee mesh 

quality and smoothness during the optimization, we add a fairness 

energy; we define it at each vertex vi as the squared norm of the 

distance between vi and the barycenter of its connected  vertices . 

The total fairness energy can be written in matrix form as .  

Fig.  v  e  iterations time (s)
3 681  1960  12  13.8 

4 1941  5784  15  78.4 

5a 606  1760  15  16.7 

5b 1140  3302  14  31.9 

5c 1089  3136  13  28.3 

Table 1: Optimization times and corresponding number of iterations for 
stress and curvature alignment, relative to the presented results. Values 
refer to triangular meshes with v vertices and e edges. The algorithm 
has been implemented in Python and tested with an Intel Core i7-
6700HQ CPU with 2.60 GHz and a 15.9 GB RAM memory.
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Additionally, the distance from xk is used as a regularizer. The successive 

variable  vector xk+1 is found by solving

with δ, ε ∈ (0,1) as weights. The iteration stops when a desired ac-

curacy is achieved, or when no more improvement is gained. For further 

details on guided projection, we refer to (Tang et al., 2014).

5. Results and discussion

The proposed workfl ow has been tested on some sample architectural 

surfaces. Results are shown in Figures 3 to 5. The presented examples 

were subject to a uniform load per unit surface area and supported 

along the boundary. Optimization times of step 1 are given in Table 1. To 

evaluate the quality of the result, we relied on the following two criteria.

Figure 5: Results. Principal meshes in equilibrium achieved with our 
method. Meshes (a) and (c) discretize non-height fi eld shapes. All boun-
daries are supported. The gridshell structures are in axial equilibrium 
under a homogeneous vertical load per unit surface area. Axial forces, 
planarity error and axial work ratios wa are shown.
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Convergence of post-optimization. As seen in Section 3.3, the quad 

mesh is post-optimized for equilibrium and planarity with the method of 

(Tang et al., 2014). In this step, we let the supported vertices glide along 

the corresponding boundary. We estimated planarity error of quadrila-

teral faces as the distance between the two face diagonals divided by 

their mean length. Regarding equilibrium, we evaluated the error per 

vertex as the norm of equilibrium Equation (1) divided by the mean vertex 

load magnitude. We considered the post-optimization converged when 

it reached a maximum planarity error below 2 % and a mean equilibrium 

error below 1 %. In the test samples we achieved convergence in less 

than ten iterations, noticing small changes in the mesh.

Finite element analysis. In actual gridshells the structure is dimensi-

oned according to fi nite element analysis. It is of interest to evaluate the 

effectiveness of our optimization in this way as well. For this purpose, we 

modeled the fi nal grid shell with steel S235 Timoshenko beam elements, 

connected together with rigid joints. Area loads were lumped in the 

nodes. The size of the cross section was chosen constant, according to 

resistance verifi cation. To evaluate the equilibrium hypothesis, we com-

puted the ratio of internal elastic work due to axial force in the beams 

over the total elastic work made by external loads. Axial work ratios wa , 

found for our results, are shown beside Figures 3 to 5.

Limitations. Not all shapes achievable with our method own a 

stress-curvature network suitable for the extraction of architectural mes-

hes. Indeed, the network layout may yield a mesh with a large variation 

of cell size, numerous or bad positioned singularities, or more generally, 

the resulting mesh may not possess the desired aesthetic qualities.

Figure 7: Architectural applications. Interior views of the meshes shown 
in Figures 5a (on the left) and 3 (on the right). Exterior views are shown 
in Figure 1.
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Figure 6: Architectural applications. Steel-glass gridshells achievable with 
the meshes shown in Figures 5b (bottom) and 5c (top). Face planarity 
errors below 2 % are compatible with cladding through flat glass panels.
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nodes. The size of the cross section was chosen constant, according to 
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Limitations. Not all shapes achievable with our method own a 

stress-curvature network suitable for the extraction of architectural mes-

hes. Indeed, the network layout may yield a mesh with a large variation 

of cell size, numerous or bad positioned singularities, or more generally, 

the resulting mesh may not possess the desired aesthetic qualities.

Figure 7: Architectural applications. Interior views of the meshes shown 
in Figures 5a (on the left) and 3 (on the right). Exterior views are shown 
in Figure 1.
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Figure 6: Architectural applications. Steel-glass gridshells achievable with 
the meshes shown in Figures 5b (bottom) and 5c (top). Face planarity 
errors below 2 % are compatible with cladding through flat glass panels.
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Abstract 
Shell structures achieve stability through double curvature, which 

brings about construction challenges. This paper presents a strategy 

to design and assemble a panelized shell with a bi-stable mechanism 

aiming to make the assembly process more efficient. The developed 

prototype has two states of flat and three-dimensional stable configu-

ration. This reconfiguration is achieved by reconfiguring the flattened 

surface of a shell into a three-dimensional structure using embedded 

bi-stable joints. In order to apply this approach on free-form double 

curved shells, a workflow to translate a shell into its flattened state is 

developed. Discrete components are connected using bi-stable joints, 

where each joint has two stable states. Once the joints are mechanical-

ly activated, they guide the adjacent components contracting and rota-

ting into the three-dimensional configuration. Initial explorations indicate 

that an edge of a shell will turn into an isosceles trapezoid in the flatte-

ned configuration while a node of a conical mesh will turn into a cyclic 

quadrilateral in the flattened configuration. The flattening process is 

demonstrated using a free-form vault, while scaled physical porotypes 

are 3D printed with PLA and tested. Future studies require exploration 

into applications with construction materials at larger scales.

1. Introduction

Double curved surfaces give shell structures their structural integrity and 

architectural expression, while being at the same time challenging with 

respect to construction. Between the 1920s and 1960s, numerous site- 

cast concrete thin-shells were built, then, because the geometry was 

confined to regular forms (e.g., sphere and paraboloids) and it required 

labor-intensive formwork, the construction of concrete shell declined 

(Meyer & Sheer 2005). Since the 2000s, with the increasing demand on 

free-form architectures, thin-shell structures in the forms of grid-shells 

and tessellated roofs have attracted the attention of architects, engine-

ers, and geometricians (Pottmann et al. 2015).

Today, several technologies facilitate the revival of the thin-shell 

structure, including structural form-finding algorithms, numerical geo-

metry optimization, and computational controlled machinery (Van Mele 

et al. 2016). By applying these methods, production of the geometrically 
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complex components becomes manufacturable within a moderate bud-

get. However, assembly remains labor-intensive work. Both formworks 

for cast-in-place concrete and falseworks for on-site assembly demand 

considerable labor to assemble. To improve the assembly process, it is 

necessary to explore methods addressing this problem.

This research introduces an alternative way of assembling shell 

structures. The goal is to develop a methodology to decompose a shell 

structure into panels connected by bi-stable joints in a flat configuration. 

Then, through reconfiguration, the bi-stable joint will guide adjacent 

panels contracting and rotating into the pre-programmed position. As a 

visualized example, Figure 1 shows the overall process of translation and 

reconfiguration from flat to double-curved of a dome-like shell.

In this paper, the focus is on the geometrical aspect of the bi-stable 

mechanism. Further material tests, actuating strategy, static and dynamic 

analysis will be explored at building scale.

Figure 1: Top views of a dome are showcasing the four phases of the 
proposed workflow. The workflow starts from a panelized shell (top left), 
followed by its flattened configuration (top right) and the installation of 
bi-stable joints (bottom right). Once the assemblage is mechanically acti-
vated, it turns to the completed assembly (bottom left).

1.1 Outline 

Related assembly approaches and the development of reconfigurable 

bi-stable mechanisms are introduced in the background section. Then, in 

the methods section, mechanical and geometrical details of the establis-

hed bi-stable mechanism are presented. A novel bi-stable mechanism 
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capable of out-of-plane rotation is proposed. The criteria for unrolling 

a shell into its flattened state are identified. Some physical prototypes 

applying these methods are shown in the result section. In conclusion, 

the findings are summarized, and the future research is proposed.

2. Background

In order to enhance the stagnating productivity in the architecture, 

engineering and construction sector (McKinsey Global Institute, 2017), 

assembly, especially on-site assembly, need to take advantage of  

automation.

From a holistic view, assembly (or assembly-aware design) is not 

merely combing separate components together; it is a constructional 

strategy to discretize an assemblage into manufacturable components 

then aggregate the components into the completed assemblage. There 

are numerous research projects investigating the interrelation between 

design and assembly. By identifying the difference between the various 

schemes, an interesting approach to carry out assembly stood out, 

reconfigurable assembly. 

Reconfigurable assembly could be defined as a constructional stra-

tegy to aggregate components in a simple and manufacturable configu-

ration, and then reconfigure the assemblage into the desired complex 

configuration. For instance, A 3D-printed straight line can be reconfigured 

into a wavy curve or a set of polygons on a flat plan can be reconfigured 

into a polyhedron (Tibbits, McKnelly, Olguin, Dikovsky, & Hirsch, 2014; 

van Manen, Janbaz, & Zadpoor, 2017). Potentially, the reconfigurable 

mechanisms can reduce the number of independent components in a 

system (Tibbits et al., 2014); an object can be stored and transported in 

the compact configuration, then be deployed to the serving configuration 

(Haghpanah, Salari-Sharif, Pourrajab, Hopkins, & Valdevit, 2016).

The previous published shape-reconfigurable mechanisms are 

achieved through expanding, contracting materials or architected materials. 

The first approach mainly relies on special materials that are capable 

of expanding or contracting when the environment is changing. For 

example, a folding mechanism can be created by layering two materials, 

which have different expansion rate in water, ensuring that a box can be 

reconfigured from a flat 3D-printed object (Tibbits et al., 2014). This type 
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of approach requires a special expanding material and the correspon-

ding environmental change to activate the expansion

The other approach involves designed porosity within the constituent 

material, and such porosity makes the material bendable and stretchable, 

which are termed as architected shape-reconfigurable materials (Kona-

ković et al., 2016; Rafsanjani & Pasini, 2016). Inspired by the research 

of ”Beyond Developable“ (Konaković et al., 2016), where researchers 

developed algorithms to translate a flat auxetic material to a double 

curved surface. The stretchable mechanisms open up an insight of how 

to approximate a double curved surface. To be noted that, this auxetic 

mechanism has a certain flexibility, therefore, it is vulnerable to deform 

when external forces are applied. 

Conversely, there is a type of architected materials can stably 

maintain it reconfigured shape, termed bi-stable or multi-stable mecha-

nisms (Haghpanah et al., 2016; Rafsanjani & Pasini, 2016). It provides 

an interesting reconfiguration feature: the scale factor between the 

two stable states can be engineered, and the two stable states have 

the mechanical strength to resist external forces. However, for the time 

being, the published bi-stable mechanisms are limited to in-plane or two 

dimensional reconfigurations.

Inspired by the development of the auxetic mechanism and the 

bi-stable mechanisms, this research investigates the application of 

bi-stable auxetic mechanisms in flat-to-curved reconfigurable shell 

structures. 

3. Methods

In the method section, three aspects of the workflow are discussed. 

Considering the overview of the processes introduced in Figure 1, illu- 

strating the panelization of a shell, this section addresses the methods 

with emphasis on the technical details of the bi-stable mechanism. In the 

first sub-section, the basic in-plan translation of the bi-stable mechanism 

is presented. Then, geometric features of the proposed out-of-plane 

rotation of bi-stable mechanism are introduced. The third sub-section 

discusses the panelization process for flattening a double-curved sur-

face. By applying these processes, a given double curved shell can be 

flattened into a bi-stable reconfiguring mechanism. 

(4)
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3.1 Mechanical features of the in-plane translation of 
bi-stable mechanisms

A basic bi-stable mechanism is represented by a unit where two beams 

are connected by a hinge and binned at two supports (Haghpanah et al., 

2016; Huang & Vahidi, 1971). The idealized structure unit is depicted in Fi-

gure 2 (top). When the unit is subjected to an external force at the center 

of the hinge, the two inclined beams compress against each other. More 

specifi cally, the external force is balanced by the vertical components of 

the axial compressions of the two inclined beams. The axial compressions 

make the beams shortened, resulting in the downward displacement of 

the center hinge. In the case that the external force is small and removed 

afterward, the beams will spring back to the original state, noted as the 

fi rst stable state in Figure 2. In a case that the external force makes the 

axial forces of the beams either reach the Euler buckling critical load 

or the beams are too fl at to provide effective vertical components, the 

mechanism arrives its critical state and consequently, it snaps-through. 

After the external force is removed, and all the material spring back to its 

original length, the mechanism rests in the alternative confi guration, noted 

as the second stable state in Figure 2. Although the mechanical deforma-

tion of the material does happen during the reconfi guration, geometrically, 

the two stable states can be simply regarded as two possible solutions of 

the circle-circle intersection. 

The load-displacement response of the mechanism in two sce-

narios is illustrated in Figure 2. Cases with different beam thickness 

are presented. The red case has thicker beams, reconfi gures without 

Euler buckling and it has a smooth load-displacement response curve, 

indicated in red in the diagram. The blue case with thinner beams has a 

higher tendency of buckling. The sharp turns in the blue curve indicate 

the start and the end of buckling. The critical states of the two cases are 

indicated with the circles in the diagram. It is noteworthy that the critical 

state of the blue case is reached easier than the other, because of the 

Euler buckling; less force or less displacement is required. 

 In the reconfi guration, two features are important for the application. 

First, the critical force can be programmed with tuning the stiffness 

of the inclined beams. Secondly, the displacement is controlled by the 

following formula: 

  (1)L



 58 AAG2018  59

of approach requires a special expanding material and the correspon-

ding environmental change to activate the expansion

The other approach involves designed porosity within the constituent 

material, and such porosity makes the material bendable and stretchable, 

which are termed as architected shape-reconfigurable materials (Kona-
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  (1)L
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The displacement formula can be applied to create a difference of 

displacements on top and bottom surface to create a bending mecha-

nism. For more detail, the geometrical features of such mechanism are 

explored and discussed in the following sub-section. 

3.2 Geometric features of the basic and proposed 
bi-stable joints

The previously published projects on bi-stable joints mainly focus on 

in-plane or two-dimensional translations. To create a bi-stable mecha-

Figure 2: Basic bi-stable mechanisms and their load-displacement 
response: The first and second stable states have normalized displace-
ment of 0 and 2 respectively. The critical states are indicated with the 
circles. E elastic modular of the material, B width of the beam, δ  
displacement of the center hinge.
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nism capable of out-of-plane bending and bring adjacent panels 

together, further adaptation and exploration are necessary. Starting from 

the basic unit mentioned in the previous sub-section, the inclined beams 

are turned into a pair of the bi-stable connector to link two panels. One 

of the panels is connected to the center hinge, and the other one to the 

supports. Subsequently, the parallel contraction is achieved on condition 

that the lengths of the two connectors at the top and bottom surface 

are the same. An example of panels linked by a pair of connectors is 

shown in Figure 3a. When a connector has a shorter length than the 

other, an in-plane rotation can be achieved (Fig. 3b). In order to trigger 

a reconfiguration and make the mechanism allow for bending, the 

displacements at the top and bottom surface should be different. The 

contracting displacement, as shown in Equation (1), is related to rotating 

angle and length of the rotating arm. To avoid torsion, the rotating angle 

shall remain constant in a single object. Conversely, it is possible to en-

large or shorten the rotating arms. In Figure 3c, the rotating arms at the 

top surface (i.e. LaT and LaB ) are smaller than the counterparts at the 

bottom. Subsequently, the bending is achieved. After the two bi-stable 

connectors with different distances of contraction are created, an in-pla-

ne rotation can also be integrated (Fig. 3d).

To be noted that, during the reconfiguration, each element rotates 

around its axis, and undergoes a temporary deformation as suggested in 

the previous sub-section. When the elements spring back to their origi-

nal length, the system reaches the second stable state. Figure 4 shows 

the rotation of each element relative to the panel in the back (gray). 

During the reconfiguration, the red and blue connectors rotate around 

the physical hinges (the dash-dotted axes in red and blue). Meanwhile, 

the green panels rotate around the green axis.

In addition to the orientation of the axes and the hinges, the contact 

surfaces between the elements need to be designed. Considering the 

fact that the axes line of the hinges (red and blue colors) have to have a 

point intersection with the rotation axis line of the panels (green color), 

a mapping method is proposed to transform a lateral surface of a cone 

around the rotation axis to a rectangle (Fig. 5). On the rectangular 

image, it is possible to design various patterns then translate the pattern 

to physical cases. One of the pattern and the result is shown in Figure 

5. As a constraint, the void space between the two panels has to be an 

isosceles trapezoid.
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Figure 3: Joints with different degrees-of-freedom. Flattened states and 
curved states are shown in the left and middle column respectively. The 
different arrangements of the rotating arm (right column) can result in 
different degrees-of-freedom in the reconfiguration.
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Figure 4: The geometric detail of the reconfi guring process: The fl attened 
stable state (left) can be reconfi gured into the curved stable state (right). 
The dash-dotted lines indicate the rotation axes; the colored arrowheads 
suggest the rotating directions of the corresponding elements. 

 

Figure 5: The conformal mapping grids show how to transform the 
design pattern on the rectangular(left) to the conical surface (middle). 
The reconfi gured result is shown on the right. 

This sub-section described the process of transforming an edge 

connected to two panels to the fl attened confi guration with the bi-sta-

ble mechanism. Two features affect the following process. These 

features are results of the adjacent panels rotating around the same 

axes. First, the rotation axis must be located on the bisector planes of 

the angle between the two panels (in the curved state). Secondly, the 

void between the panels in the fl attened state has to be an isosceles 

trapezoid. In the next subsection the unrolling of a shell to a fl attened 

confi guration, with integrated reconfi gurable joints is explained.

3.3 Panelization and unrolling of a panelized shell into 
the fl attened state

As mentioned, the rotation axis has to be in the bisector plane of the 

dihedral angle between adjacent panels. Furthermore, the rotation axis 

dictates the orientation of the hinges and the interface between panels 

and connectors. For a node, each surrounding edge introduces one in-
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terface with such orientation. One may prefer all the interfaces intersect 

each other at the same axis. In such case, one of the findings of the 

research is that the co-axis of every node dictates the tessellation to be 

conical meshes (Liu, Pottmann, Wallner, Yang, &Wang, 2006). 

The constraint of the isosceles trapezoid and the preference of the 

conical mesh determine that a node has to be a cyclic polygon in the 

flattened state as shown in Figure 6. The panels are shaded in gray, and 

the symmetric axis of the trapezoid illustrated in dash-dotted lines. The 

proving of the cyclic quadrilateral is separated in two parts.

The first part of the proving explains that, in the flattened state, the 

vertex of a panel (Fig. 6) have to be on an arc if the two neighbor panels 

are fixed. Considering a node surrounded by four panels, in a flattened 

state, and the location of the second panel ( P2 ) is not determined 

yet while the other P1 and P3 are fixed. By the round angle around 

Figure 6: Different flattened states of a node from a conical mesh. The 
shell state is shown in b, the a, c and d display the flattened states in dif-
ferent configurations. The dash-dotted lines indicate the symmetric axes 
of the trapezoids. These axes intersect at the center of the circumcircle 
of the quadrilateral formed by the vertices.
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the vertex of P2 , it can be derived that . By the 

straight angles around the vertices of P1 and P3 , it can be formulated 

as  and . While the triangle between 

these vertices implies that: . With these equations, the 

variable angles (i.e. α1 , α2 ) can be eliminated. Then the following equa-

tion is derived: . In an alternative format, it can be 

expressed as: . This equation implies that the 

vertices of the P2 must locate on the arc between P1 and P3 , no matter 

what degrees the angles α1 and α2 have.

The second part of the proving explains that the arcs of the verti-

ces of P2 and P4 complete a circle. Given: . 

Therefore, the summation of the opposite angles in the quadrilateral can 

be expressed as it follows:

   (2)

Considering the node is originated from a conical mesh, which means 

that the angles of the four panels should meet the condition (Liu et al., 

2006):

   (3)

Therefore, Equation 2 can be updated as:  

   (4)

Equation (4) implies the arc for P2 and the arc for P4 complete a full 

circle. This feature constrains the quadrilateral to be cyclic.

Since the quadrilateral is cyclic, the symmetric axes of the trapezoids 

intersect at the center of the circumcircle. The angles between the sym-

metric axes (e.g.,  in Fig. 6) meet a condition similar to conical mesh: 

. It can be derived from  and 

. Therefore, . Similarly, . Since 

, and , it can be concluded that: 

   (5)

Equation (4) is similar to the condition displayed in Equation (3).
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As it is shown in dash-dotted lines in Figure 7, the symmetric axes of 

the trapezoids surrounding a panel form a polygon. The polygons can be 

seen as the extensions of the panels. In the three-dimensional conical 

mesh all the nodes surround by four angles meet Equation (3), and the 

same condition makes the extended flattened polygons in the two-di-

mensional configuration hold the condition of Equation (5).

These identified features help the development of further algorithmic 

design methods. A preliminary result of unrolling of a free-form conical 

mesh is displayed in Figure 7.

4. Results, reflection, and future exploration

Following the discussion on mechanical and geometrical features of 

the bi-stable joint, panelization, and flattening, this section describes the 

validation of the proposed methods through physical prototyping. The 

prototypes were produced using fused filament 3D printing with polylac-

tic acid (PLA). The hinge between connectors and panels are fabricated 

as compliant hinges. Although the bi-stable mechanism does not have to 

be manufactured with compliant hinges, it is one of the most convenient 

methods to combine the hinge mechanism with additive fabrication. Cur-

rently, the detail design scheme for the compliant hinge is under further 

investigation. Some of the results demonstrate that the 3D-printing of 

compliant hinges is a promising design to production method for pro-

totyping. Figure 8 shows one of the first set prototypes of the bi-stable 

mechanism applied on bending reconfiguration, while Figuer 9 displays 

the reconfiguration process of the 3D-printed saddle surface.

By extending the principles of the edge-based bi-stable mechanism 

as shown in Figure 8 and Figure 9, a node-based bi-stable mechanism 

can also be achieved. Figure 10 shows an ongoing exploration of desig-

ning a bi-stable auxetic flat-to-curve reconfigurable mechanism, which is 

achieved by applying the same design principles. 

When comparing widely explored origami mechanisms, which require 

thin materials, the proposed mechanisms are compatible with thick ma-

terials. By introducing the tilted hinges, the thick materials can undergo 

flat-to-curved reconfiguration. The property of thickness-insensitiveness 

allows engineers to thicken any identified week part to reduce the local 

stresses.
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Figure 7: Top views of a free-form vault: The conical mesh (top) is 
translated into a flattened configuration (bottom). A node in the shell 
configuration will transform into a cyclic quadrilateral in the flat confi-
guration while an edge will turn into an isosceles trapezoid. The circles 
in the figure denote the circumcircle of the quadrilaterals while the dash- 
dotted lines represent the symmetrical axes of the trapezoids. 
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Figure 8: Test of the bi-stable joint, which is 3D printed with 5 mm thick 
PLA panels and 0.5 mm width compliant hinges. Pushing the panels 
(left), the bi-stable joint is mechanically activated and reconfigures to the 
curved shape (right).

Figure 9: Reconfiguration sequences of a saddle surface produced 
with 3D printed PLA. It proves the concept of applying the bi-stable 
mechanism to a double curved shell. The sequence starts from the nine 
panels in the flat configuration (top left), pushing the joints one-by-one, 
it gradually takes the shape of the final configuration.

The exploration has identified that solution exists, under geometrical 

constraints and under the preliminary assumptions of zero-stiffness 

hinges and flexible materials. For future geometrical studies, the authors 

will explore and develop relevant methods to systematically translate 

freeform surfaces into the titled cutting patterns for the bi-stable auxetic 

mechanism. For the future material investigation, the authors will investi-

gate materials to fabricate the hinges and the panels. For the structural 

representative prototypes, the authors will add extra weight to the scaled 

physical prototypes for both statical and dynamical tests to compensate 

scale factor.
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Figure 10: From flat to sphere reconfiguration with bi-stable auxetic 
mechanism can also be achieved with the shown design principles. By 
squeezing the mechanism, 25 panels connected by 16 smaller rotating 
node connectors are reconfigured into the pre-programed position in 
one step. Video of the reconfiguration can be accessed via https://
youtu.be/4GcG_AurBQk.

Figure 11: Flat to saddle reconfiguration with bi-stable auxetic. Same as 
the reconfiguration of the spherical surface, by squeezing the mecha-
nism all the components are reconfigured into the pre-programed posi-
tion in one step. Video of the reconfiguration can be access via https://
youtu.be/WWHXlySTkfI.

5. Conclusion
In this research, the presented method of developing bi-stable mecha-

nism is introduced as an approach for the assembly of shell structures. 
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The workflow to translate a three-dimensional curved shell structure into 

a flattened surface is explored, and specific geometric design constraints 

are discovered and proved. Validating the method, several reconfigurable 

shell topologies are designed and physically prototyped with bi-stable 

mechanisms. 

In cases of any given planar quadrilateral meshes, as a necessary 

condition, the spaces between the edges of the flattened panels are 

isosceles trapezoids. While in cases that the curved surface is a conical 

mesh, the spaces between the flattened panels not only met the neces-

sary condition of being isosceles trapezoid but also, as a sufficient con-

dition, vertices of all neighboring panels are on a circle. These necessary 

and sufficient conditions later can be further integrated in an assembly- 

aware parametric modeling. The novelty of the proposed method is that 

it allows out-of-plane or three-dimensional reconfiguration. Consequ-

ently, the derived principles can be applied to more complex free form 

morphologies.       

To implement the proposed reconfigurable assembly at building 

scales, further investigations need to address structural aspects and 

material properties. In macro scale design of reconfigurable shells, inte-

grating the structural analysis in the form-finding process can inform the 

overall morphology of the planar mesh surfaces. In micro or material sca-

le, further studies can address mechanical properties of the connector 

elements, considering fatigue for passive joints and controlled actuation 

for active systems. This is important as the critical force to activate the 

reconfiguration can be adjusted by tuning the stiffness. The strength of 

different bi-stable joints can be mechanically tested. The set of produ-

ced prototypes shows that in some cases the sequence of activating the 

bi-stable joints is important (Fig. 9). While in some cases as it is tested 

in the prototype with an auxetic property, there is no sequence and the 

reconfiguration happens at once (Fig. 10 and Fig. 11).  
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The workflow to translate a three-dimensional curved shell structure into 

a flattened surface is explored, and specific geometric design constraints 

are discovered and proved. Validating the method, several reconfigurable 

shell topologies are designed and physically prototyped with bi-stable 

mechanisms. 
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le, further studies can address mechanical properties of the connector 

elements, considering fatigue for passive joints and controlled actuation 

for active systems. This is important as the critical force to activate the 

reconfiguration can be adjusted by tuning the stiffness. The strength of 

different bi-stable joints can be mechanically tested. The set of produ-

ced prototypes shows that in some cases the sequence of activating the 

bi-stable joints is important (Fig. 9). While in some cases as it is tested 

in the prototype with an auxetic property, there is no sequence and the 

reconfiguration happens at once (Fig. 10 and Fig. 11).  
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Abstract 
This paper explores how computational methods of representation 

can support and extend kagome handcraft towards the fabrication of 

interlaced lattice structures in an expanded set of domains, beyond 

basket making. Through reference to the literature and state of the 

art, we argue that the instrumentalisation of kagome principles into 

computational design methods is both timely and relevant; it addresses 

a growing interest in such structures across design and engineering 

communities; it also fills a current gap in tools that facilitate design 

and fabrication investigation across a spectrum of expertise, from the 

novice to the expert.  

The paper describes the underlying topological and geometrical 

principles of kagome weave, and demonstrates the direct compatibility 

of these principles to properties of computational triangular meshes 

and their duals. We employ the known Medial Construction method 

to generate the weave pattern, edge ‘walking’ methods to consolidate 

geometry into individual strips, physics based relaxation to achieve a 

materially informed final geometry and projection to generate fabri-

cation information. Our principle contribution is the combination of 

these methods to produce a principled workflow that supports design 

investigation of kagome weave patterns with the constraint of being 

made using straight strips of material. We evaluate the computational 

workflow through comparison to physical artefacts constructed ex-ante 

and ex-post. 

1. Introduction 

The term “weaving” covers a broad range of textile production methods. 

Common to all is the principle of material interlacing to generate local 

systems of friction-based reciprocity. This imbues resulting artifacts with 

robustness through structural redundancy, resilience through friction-ba-

sed junctions, efficient use of material and potent aesthetic qualities. 

These attributes have long been exploited in a diverse range of use are-

nas, through craft-based tacit knowledge or engineering-based explicit 

knowledge, to produce lightweight artifacts with emergent properties 

that offer advantage beyond those of the constituent materials. 
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1.1 Kagome 

Kagome represents a particular class of weave which, in many ways, is 

conceptually closer to braid. Where conventional weave is defined as the 

interlacing of two distinct sets of yarns (warp and weft) at right angles 

to each other, braid is defined as the interlacing of three or more distinct 

sets of yarns (or ‘‘weavers’’) at oblique angles to each other [1]. In kagome, 

the geometrical archetype arranges these three sets as a regular trihex-

agonal tiling with a vertex configuration (3.6)2 and p6 symmetry.  

 

Figure 1: A regular planar sparse kagome weave comprising three dis-
tinct sets of weavers. The underlying pattern is a trihexagonal tiling. 

The physical properties of these lattices are determined by the interplay 

between combinatorics (valences of vertices and faces, connectivity, and 

topology), geometry (vertex positions) and material attributes (mechani-

cal and geometric). Tacit understanding of this interplay allows the crafts 

person to fabricate close approximations of arbitrary design targets. 
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1.2 Motivation

Kagome represents a highly principled method for producing complex 

curved geometries with a single mesh structure, without the necessity 

of joinery or the fabrication of nodes. The self-bracing capacity, greater 

shear resistance (compared to biaxial weave), ability to rigorously control 

geometry, high redundancy, ability to locally repair and potent aesthetic 

qualities, make triaxially woven structures an attractive target for investi-

gation across a diverse range of design and craft practices, including 

architecture. However, without means for visualisation and interrogation, 

complex design targets can remain challenging for experts to strategise 

and realise (keeping account of the number of weavers, their crossings 

and potential self-crossings, calculation of material requirements, asses-

sing discretisation due to material lengths, etc.), and remain out of reach 

for those without a tacit craft understanding. 

Figure 2: Triaxially woven structures produced using straight maple 
strips. Regular (left) and arbitrary (right) geometries are clearly gover-
ned by the interplay between introduced topological defects, material 
stiffness and material geometry.  

By intersecting the underlying principles governing the interplay of topo-

logy and geometry in triaxial systems with computational representation, 

a platform for expanded exploration of these systems can be establis-

hed. This holds relevance to a wide variety of current and emerging 

domains of application. 
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Figure 3: Two pre-relaxed kagome patterns approximating design geo-
metries. The weave topology is directly derived from inherent properties 
of the design mesh (valence) and the weave pattern directly derived 
from geometric attributes of the mesh dual (connected edges and their 
lengths). 

In this paper, we present a method for generating weave patterns with 

the constraint that they be fabricated from straight strips of material. 

Our motivation for working with straight strips relates to supporting the 

future exploration of kagome applications at scales ‘‘beyond the basket’’, 

where efficient use of material becomes a poignant issue. We address 

key representational challenges including the generation of appropriate 

topology, or mesh valence, to achieve a design target, together with the 

relaxation of the mesh to simulate material performance – both of which 

hold influence over final shape. In addition, we demonstrate the extrac-

tion of fabrication instruction and the physical making of computationally 

developed design targets. We position this work in connection with 

the literature to: 1) differentiate it from related approaches (specifically 

related to the use of geodesics); 2) identify the open challenge that our 

work addresses; 3) cite computational methods that we build upon.  

Finally, we discuss our contribution, identify its limits and offer  

trajectories for future work. 
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2. Topological principles governing  
kagome geometry
The archetypal kagome lattice is a woven version of a tri-hexagonal 

tiling; the weavers in one direction incline at an angle of 60° to those of 

the other two directions, and the lattice, consisting of equilateral triang-

les and regular hexagons, will cover an infinite flat plane (Fig. 1).

2.1 Single curvature
Single curvature of the kagome lattice is easily achieved by bending 

the plane, creating a developable surface. If the axis of curvature exists 

across the centre points of opposite edges in the unit hexagon, one set 

of weavers will act as arches perpendicular to this axis. If the axis of 

curvature exists across opposing vertices of the unit hexagon, one set 

of weavers will act as beams parallel to this axis. Limits on the radius of 

curvature are dependent on the mechanical properties of the material.

Figure 4: Single curvature is easily achieved in the regular triaxial lattice 
and can follow any line of hexagonal symmetry – across opposite edge 
centres privileges arches, across opposite vertices privileges beams. 

2.2 Double curvature

Breaking topological symmetry of a regular trihexagonal tiling by the 

introduction of geometric singularities will induce double curvature [2]. 

These topological defects, or ‘‘lattice disclinations’’, are the mechanisms 

that introduce in-plane strains and result in out-of-plane deformation [3]. 

Positive Gaussian curvature results from the introduction of <6 sided 

cell. Figure 5 shows physically woven examples in which a single cell has 

been substituted; firstly with a pentagon, then a quadrilateral and finally 

a triangle. Of note is the way in which deformation out-of-plane becomes 

more pronounced as edges are removed from the substituted polygon. 

Figure 6 shows physically woven examples of negative Gaussian  
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curvature resulting from cell substitution with a polygon of side >6; firstly 

a heptagon, then octagon and finally a nonagon. Here, it is the increase 

in sides of the substituted polygon that results in a more pronounced 

curvature. Despite changes in topology through the introduction of 

disclinations, the vertex valence of the materialised lattice is maintained 

at v4 throughout, corresponding to the local crossing of two weavers.
 

Figure 5: Introducing disclination in the regular lattice by substituting 
a <6 edge count polygon produces positive Gaussian curvature. From 
top to bottom, each row decreases an edge – pentagon; quadrilateral; 
triangle. 
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Figure 6: Introducing disclination in the regular lattice by substituting a 
>6 edge count polygon produces negative Gaussian curvature. From top 
to bottom, each row increases an edge – heptagon; octagon; nonagon.

Weaving disclinations provides the means to locally distort the lattice, 

causing a controlled deformation of the surface out of plane. Strategic 

combinations of disclinations, informed through tacit knowledge, allow 

the crafts person to realise specific and diverse design intent (Fig. 7). 

However, in an inexhaustible space of possible combinations, enlisting 

computation becomes a relevant tool for exploring, searching and navi-

gating this space.
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Figure 7: A diverse variety of artefacts demonstrating results from  
strategic combinations of disclinations. 

3. State of the art

In this section, we highlight relevant literature restricted to computational 

representation of weave patterns and related computational methods 

with a particular focus towards architectural design. We briefly cover 

methods for establishing and refining mesh topologies, approaches 

to weave in general, approaches to kagome representation in particu-

lar and provide a summary that identifies the open challenge that we 

address. 

3.1 Mesh topology and refinement
With a focus on mesh representations that have relevance to archi-

tecture, Schiftner et al. provide a method for refining triangular design 

meshes such that the incircles of mesh faces form a packing – a CP 

mesh [4]. This class of mesh is directly related to the kagome pattern, 

which can be produced by connecting the centres of tangent incircles. 

As precise CP meshes are rare, an optimisation algorithm is used to re-

fine a mesh towards an approximation of the design target. The mesh is 

generated by producing an isotropic centroidal Voronoi diagram which is 

iteratively relaxed using Loyd’s algorithm. However, this leads to random 

placement of singularities which is undesirable if aiming to achieve regular 

geometries. Use of the mesh operators, edge collapse, edge flipping and 

edge splitting is a common method for locally refining the topology of 

mesh as described in Narain et al. [5] and allows approximate locating of 

required valence in the required position. 
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3.2 Approaches to weave pattern representation  
in general

Computational representation of weave patterns in general have been 

well studied, however, the majority of these relate to biaxial weaving or 

braiding. In most cases, the representation task is approached using the 

tiling method described by Mercat [6] in which a predefined tile dictio-

nary defining local weaver geometry and crossings can be applied to a 

quad mesh. This has been applied in the context of arbitrary manifold 

design meshes [7], and with specific focus on braided structures [8, 9]. In 

these cases, the principled approach to representation, which considers 

interlacing and constraints related to fabrication, provides workflows and 

tools for realising complex morphologies that are directly producible. 

However, these tools operate with quad meshes which are less suited 

to the kagome representation task. In another approaches, modelling 

proceeds through direct manipulation of explicit geometry [10]. This is 

not deemed to be a viable approach for the task considered here, consi-

dering the opportunity for exploiting the close affinity between the data 

structures of triangular meshes and kagome pattern principles, and the 

culture of use surrounding meshes for design expression. 

3.3 Approaches to kagome pattern representation  
in particular

Within architectural design specifically, approaches for defining kagome 

patterns tend to exhibit shortcomings by either: 1) only considering a to-

pologically regular trihexagonal tiling; 2) exploring geometrical outcomes 

of fixed and predetermined topologies; 3) abstracting out the weaving 

principle such that the mechanical properties gained by interlacing are 

sacrificed, whilst maintaining the topology of the trihexagonal tiling. 

In the first case (which is often coupled with the third case) complex 

geometries are achieved by a distortion of the regular grid rather than 

conforming to the principles for achieving curvature described in the se-

ction above [11, 12]. This can present significant challenges for fabrication 

strategies, junctioning methods and material use. In the second case, 

relaxation of pre-determined and fixed topologies can result in principled 

patterns, but impedes fluid design investigation due to a lack of ‘‘on-the-

fly’’ topology editing methods. 

Kagome patterns have also been explored as a derivative of a gene-

ral approach to free-form surface segmentation using geodesic pattern 
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fly’’ topology editing methods. 

Kagome patterns have also been explored as a derivative of a gene-
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generation [13, 14]. The cited literature describes two approaches –  

N–patterns from level sets, and the use of a regular trihexagonal web of 

geodesics – but also identify limits in both cases. Pottman et al. acknow-

ledge that the level set approach produces webs of curves that are as 

geodesic as possible, but deviations are inevitable in conditions of strong 

Gaussian variance [13]. Deng et al. point to the fact that true geodesic 

webs do not exist in general and that adequate surface approximation is 

not always possible [14].  

In contrast to these geodesic methods, which operate from proper-

ties of a surface (which in practice is generally approximated by a mesh), 

our approach operates directly on properties of the mesh and form-finds 

the final geometry through a relaxation procedure. This models the 

actions of the local reciprocal systems, which, in practice, we find causes 

material strips to deviate from true geodesics due to induced torsions 

often arising in areas of pronounced double curvature. In short, the use 

of geodesics to derive kagome patterns cannot cover all cases that can 

be materialised in practice, whereas a principled kagome pattern can 

always be derived from a manifold triangular mesh [15].  

The strong affinity between kagome lattice patterns and computa-

tional triangular manifold meshes have been described by Mallos and 

implemented in the context of a kagome design and fabrication tool 

[ibid]. However, to our knowledge, this tool does not implement a step 

that allows the consideration of kagome patterns resulting from straight 

members – a case that requires relaxation of the kagome geometry with 

specific relaxation constraints. 

3.4 Identifying the open challenge 
In summary, and in reference to the state-of-art presented here, we 

can state that whilst there exist a number of methods and algorithms 

related to the kagome representation task, to the best of the authors 

knowledge, a holistic computational approach that aids designers by 

coupling specific fabrication constraints with the principles for “real-time” 

exploration of arbitrary kagome topologies and geometries, remains an 

open challenge.
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4. Computational approach
Our approach to achieve a principled and generalised method for 

kagome representation, of arbitrary geometries, makes use of various 

algorithms and methods described in the literature; we declare these 

below. The contribution of this paper is to draw these together to fulfill 

the representation task with a focus on fabrication using straight strips 

of material. The representation task has three stages:

1. topology generation

2.  kagome pattern generation

3. relaxation to final geometry

4.1 Topology generation

Using the low-polygon modelling method [16], a coarse triangular mesh 

approximation of the desired geometry is created. In the example shown, 

the target geometry to model is a existing kagome “socket” condition 

comprising a regular planar face intersected by a singularly curved tube. 

The transition exhibits negative Gaussian curvature (Fig. 8).  

The topology of the low-poly mesh is adjusted to establish the 

required valence structure. Adjustment is done using conventional mesh 

refinement operations; edge splitting, edge flipping and edge collapsing [5].

 

Figure 8: The target geometry to model is a detail of an existing  
kagome weave with negative Gaussian curvature (left). This is  
coarsely approximated with a low-polygon mesh (right).
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Mesh valence of a regular planar tiling is 6, positive Gaussian curvature 

requires <6 (but >2) valence and negative curvature requires >6 valence. 

In this case, six valence 7 conditions around the rim of the transition and 

regular valence 6 conditions to the stem have been introduced. Once the 

refined valence structure is established, intermediary mesh operations 

such as relaxation (as in the case shown in Fig. 9) or mesh subdivision 

can be applied. 

4.2 Kagome pattern generation
The mesh dual is obtained and decomposed into a data structure of 

individual vertices and their three connecting edges. A new vertex is 

then placed at the centre of each connecting edge and these three new 

vertices connected with a closed polyline. This operation essentially 

truncates the original vertex, creating a new facet that represents the tri-

angular element in the kagome lattice. The operation is equivalent to the 

medial construction method described by Mallos [15]. At this point, the 

weave pattern is purely visual and contains no information about weaver 

continuity; all higher edge faces of the lattice are visually inferred from 

their surrounding triangles.

The list of truncated face polylines is now converted into a data 

structure that represents individual weavers. The polylines are exploded 

into individual linear elements and then “walked” to find connected seg-

ments that meet a criteria of minimum angular deviation. Once weavers 

have been identified, they are locally displaced in an alternating pattern 

(up/down) along the surface normal vector at crossing points to model 

interlacing. Once interlaced, each weaver is converted into a triangular 

mesh approximating the material strip width using the method described 

by Vestartas et al. [9]. At this stage, meshes may exhibit areas of interse-

ction as can be seen in Figure 11 (right).

4.3 Relaxation to final geometry
The weaver meshes are relaxed using the constraint-based solver 

Kangaroo2 for Grasshopper. Additional constraints are added to ensure 

weavers relax into developable geometries approximating straight strips, 

and to prevent collisions and intersections between weavers – thus 

preserving the structure of interlacing. Having found the final geometry 
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Figure 11: The edges of the kagome pattern are “walked” to construct 
individual weavers (left). Weavers are then displaced normal to the 
surface to model interlacing, and then meshed according to material 
geometry (right). 

Figure 10: The mesh dual is obtained (left) and each vertex “truncated” 
to generate a visual kagome pattern (right). This pattern does not yet 
describe individual weavers. 

Figure 9: The mesh is refined by collapsing, splitting and flipping edges 
to modify the valence according to the required curvature (left). A pre-
liminary relaxation has then been performed after adding an additional 
layer of outer triangles in the plane to encapsulate the valence 7  
conditions (right). 
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through relaxation, fabrication information can now be extracted (Fig. 12). 

Weaver lengths are easily determined, and being developable, projected 

as unrolled strips and marked with crossing points indexed with other 

weavers or self-intersections. Physical limits on material length can 

inform weaver discretisation, ensuring sufficient material cross-over for 

splicing.

5. Two cases
In this section we briefly present two case studies that examine 

relationships between a computational representation and a physical 

artefact – one constructed ex-ante and the other ex-post modelling. 

The first study demonstrates the use of our approach in the context of a 

simple fabrication exercise. The second study demonstrates the use of 

our approach in the context of computational design exploration. 

Figure 12: The modelled weavers are relaxed to ensure they corres-
pond to straight elements and the final weave geometry is form-found. 
Fabrication information is then extracted and includes length of strips, 
strip ID’s and strip crossing ID’s. This information is applied to the weave 
representation (left) and as material layout (right).

 86 AAG2018  87

Figure 13: Extraction of fabrication information to produce a woven 
stadium of revolution.

5.1 Case 1: Stadium of revolution

In this first case, we aim to construct a physical weave from computationally 

generated fabrication information. A stadium of revolution, or ‘‘capsule’’ geo-

metry, is defined as the design target. This geometry comprises a cylinder 

with single curvature and two hemispherical caps. Drawing upon the princip-

les governing double curvature in kagome lattices, we expect the hemisp-

herical portion to contain pentagonal ‘‘defects’’ to achieve local synclastic 

curvature. Each pentagon included in the mesh increases the aggregate 

angular deficiency by π/3, therefore a triaxial mesh with 6 pentagons will 

make a hemisphere. The rest of the lattice can be achieved using a regular 
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hexagonal tiling. We follow the modelling steps described in section 4 to 

determine how many weavers, their respective lengths, crossings with other 

weavers and self-crossings. We see from this analysis that the woven figure 

comprises 6 simple rings of length cca. the circumference of the cylinder, 

and two longer weavers with multiple self-crossing points. This is verified 

with the physically weaving shown in Figure 13 (bottom right).

5.2 Case 2: The distorted helix
In this second case, the kagome helix is woven prior to any computational 

modelling. Rather than aiming towards verisimilitude of the model, we 

demonstrate how the relaxation step can provide exploratory insights 

through simulating the interplay of material behaviour and topology. The 

helix is modelled and the mesh refined, but in this case disclinations are 

randomly placed within the mesh. As the relaxation proceeds and weaver 

geometries straighten according to our fabrication constraints, and local 

sites of curvature emerge where hexagons have been substituted with 

synclastic curvature inducing pentagons, or anticlastic curvature indu-

cing heptagons. In this case, we demonstrate how computation provides 

an accessible and fast (compared to physical weaving) exploratory tool 

to assist the designer in searching the inexhaustible space of possible 

disclination combinations, and potentially discovering novel aesthetic 

expressions.  
 

Figure 14: A physically woven helix with mesh disclinations placed to 
realise a regular geometry (left) compared to a simulation where discli-
nations have been randomly located (right). This shows the necessity for 
the relaxation step, but also suggests interesting geometric articulations 
and ‘‘organic’’ expressions of a corrupted ideal.
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6. Towards architectural and structural 
applications
the instrumentalisation of a principled computational approach to kagome 

pattern generation and representation has broad applicability. Within 

architecture, hexagonal tiling patterns have been exploited to stunning 

spatial effect by Shigeru Ban in projects such as the Pompidou Metz 

and Nine Bridges golf club. However, in these cases, double curvature is 

achieved through a distortion of the regular hexagonal tiling. The resulting 

geometry is realised through complex shaping of stiff curved laminated 

members. In such a context, the application of kagome topology principles 

for achieving complex geometry could offer a more rational approach to 

geometry with the implication of greater efficiency in fabrication. 

In the context of elastically bent structures, the attributes of mecha-

nical performance arising from interlaced material and efficient spanning 

of space with straight strips of material have been demonstrated in 

the CODA Jukbuin Pavilion. In this case, the weave principle of mate-

rial interlacing is maintained but double curvature is achieved through 

material bending behaviour rather than steered by topology – the design 

topology is a regular hexagonal tiling. This results in global curvature 

effects but denies the possibility of highly localised double curvature. 

Nevertheless, this work is of particular interest as it demonstrates the 

transfer of interlacing principles at architectural scale.

In framing a direction for future work, our emerging hypothesis is 

that architectural scale structures can be realised with full adherence to 

kagome weaving principles, including material interlacing. This hypothe-

sis is supported by a comparative analysis of two hypothetical gridshells 

which shows that a kagome gridshell outperforms a quadrilateral grids-

hell for a very similar construction cost [17].

Our outlook is towards the use of elastically bent members rather 

than stiff curved laminated members. However, as we discuss above, 

we see kagome principles being applicable in both contexts - in the 

former, towards bending-active structures that adhere more closely to 

their basket antecedents; in the latter, towards rationalised approaches 

to geometry and fabrication. In the context of elastically bent structures, 

principle challenges revolve around structural capacity. Yet despite this 

challenge, the opportunities for material efficiency, a rationalised app-

roach to free-form geometry and efficient fabrication minimising the use 

of connectors make this a compelling territory for further study.
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6.1 Limits and future work 

Where the work presented in this paper has limited itself to exploring 

the task of kagome representation and simulation with consideration 

to fabrication constraints, analysis of structural performance marks a 

necessary next step – especially if seeking to explore architectural 

applications. Preliminary investigations of model transfer to the structu-

ral analysis platform Autodesk Robot indicate that representational 

outcomes generated by the approach described are poised to be taken 

forward into this domain of analysis. In addition, the ability to computa-

tionally represent arbitrary kagome geometries and interrogate these 

from a fabrication perspective, presents the compelling opportunity of 

investigating robotic production. 

7. Conclusion

This paper has presented a principled computational approach to the 

task of kagome representation in arbitrary triangular meshes. Following 

the literature, we have demonstrated the strong affinity between the 

principles governing kagome patterns and intrinsic topological featu-

res of computational meshes and geometric features of their duals. 

We have shown how design meshes can be manipulated to adjust the 

baseline valence 6 structure that governs planar kagome tiling, upwards 

and downwards to create sites of local double curvature. We have also 

shown how the kagome pattern itself is derived from the mesh dual by 

vertex truncation to the mid-points of connected edges – following the 

medial construction method.

We have extended the state-of-the-art by intersecting this method 

with physics based relaxation to allow simulation of the interplay between 

topology and notional mechanical properties of weaver material, thereby 

constraining results within the bounds of fabrication criteria – specifically 

that patterns can be made from straight strips of material. This constraint 

is seen to be a benefit for enticing transferability and use within domains 

where material saving can be a key issue, such as architecture.

FInally, the approach presented here contributes a method that can 

be computationally leveraged to explore and search the inexhaustible 

domain of possible kagome patterns, and opening the possibility of this 

search to be conducted by both the novice and the expert. 
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Abstract 
We propose an interactive computational design method for deployable 

auxetic shells. We realize deployable auxetics as triangular linkages 

that can be actuated with simple expansive mechanisms to assume 

a desired freeform target shape. The core feature of these structures 

is that the target shape is directly and uniquely encoded in the 2D 

linkage layout. As a consequence, the structure can be fabricated and 

assembled in the plane and automatically deployed to its 3D target 

configuration without the need for any scaffold, formwork, or other 

temporary support structure. We focus on automatic deployment via 

inflation or gravitational loading for which a rigorous theoretical analysis 

has been given in prior work. Our paper builds upon these results and 

presents optimizationbased direct manipulation tools to edit and adapt 

an auxetic linkage structure to effectively explore design alternatives. In 

addition, our solution enables simulation-based form-finding, where the 

desired target surface is interactively constructed using the deploy-

ment mechanism as a form-finding force. We present several design 

case studies that demonstrate the effectiveness of our approach and 

highlight potential applications in architecture.

1. Introduction

Architectural structures are commonly composed of multiple elements 

that are assembled on-site. Construction is executed by incrementally 

placing components at their target 3D location, using scaffolding or 

other support mechanisms to guide element positioning and maintain 

structural stability during intermediated stages of the assembly. Especi-

ally for intricate free-form geometry, the complexities of this process can 

pose severe challenges. Deployable structures offer an interesting alter-

native for construction. They typically can be assembled in a significantly 

simpler state and then deform to the desired target shape. A prominent 

example is elastic grid shells that can be assembled on the ground and 

mounted into a double-curved form, see Lienhard (2014).

We propose a computational design system for a new type of de-

ployable structure based on a triangular auxetic linkage. Our structures 

can be fabricated and assembled in the plane and deployed to their 

target position using either inflation or gravity. No additional guiding 
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scaffold is required because the target shape is directly encoded in the 

planar assembly. The key concept is a spatially graded auxetic pattern, 

where individual triangular elements are scaled to program the maxi-

mal local expansion factor required to achieve the global target shape. 

Paired with an area-expanding deployment, such as air-inflated cushions 

or gravitational loading, this yields a simple and robust way to realize 

double-curved surface structures.

Deployable auxetics offer a number of benefits:

 » Form-defining deployment: The double-curved target shape is auto-
matically achieved via expansive deployment from a planar configu-
ration. Inflation or gravitational loading (for height field geometry) can 
be used to maximally stretch the material everywhere, which then 
constrains the surface to the desired target configuration.

 » Simple fabrication: The geometric simplicity of the auxetic linkage 
directly transfers to fabrication. Variable-sized triangles can easily be 
cut using CNC fabrication technology from a wide variety of approx-
imately inextensible base materials, such as fabrics, wood, metals, or 
plastics. Mass fabrication of joints is possible since all node connec-
tions are identical.

 » Rich geometry: Deployable auxetics admit a rich and well-defined 
design space, enabling new forms beyond the existing classes of 
structures deployable from planar rest states.

This paper complements the work of Konaković-Luković et al. (2018) 

who proposed a postrationalization process to find a deployable auxetic 

linkage for a fixed input design surface. While post-rationalization is 

an important design tool, it offers limited support for evaluating design 

alternatives or engaging in material- and constructionaware exploration. 

The functional and aesthetic properties of the resulting auxetic linkage 

are difficult to anticipate when designing the required reference geo-

metry. In particular, the sizing of triangles and specific boundary alignme-

nt result from a global optimization that does not necessarily yield easily 

foreseeable results. It is therefore beneficial to provide direct manipula-

tion tools to further edit and adapt the optimized structure to better meet 

the design goals. Our work introduces such direct editing operations. 

The presented computation-assisted design system allows for effective 

design space exploration of deployable auxetic structures and gives the 

designer full control of the final deployed surface geometry. In addition, 
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our approach provides tools for computational form-fi nding, where the 

desired target surface is interactively constructed using the deployment 

mechanism as a form-fi nding force.

inflation balloon planar auxetic pattern simulated deployed state final deployed state

intermediate deployment states during inflationinitial state before inflation

Figure 1: Physical prototype with infl ation deployment, Konaković-
Luković et al. (2018). The graded auxetic pattern has been laser cut, 
mounted onto a support frame and infl ated with a generic rubber balloon.

2. Related Work
To put our work into context, we briefl y review related work on deployable 

structures and auxetic materials. We refer the reader to Konaković-

Luković et al. (2018) for additional discussion of prior work, particularly 

methods for material-aware post-rationalization in computer graphics 

and digital fabrication.

The concept of kinematic deployment is well studied in architecture. 

For large-scale structures, elastic grid shells are probably the most 

prominent example. Composed of interconnected elastic beams, an 

elastic grid shell achieves its desired target shape by active bending, 

Lienhard (2014). Common methods of erection include lifting with cranes 

or various types of scaffolding or mechanical formwork. Erection of 

elastic grid shells via infl ation has been discussed in Quinn and Geng-

nagel (2014), where the authors identify a number of potential benefi ts 

in terms of safety, construction time, and cost. Form-fi nding for elastic 

grid shells is also an active topic in material science; see, for example, 

the recent work of Baek et al. (2017). Deployable structures are also 
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used for various building components. For example, Hannequart et al. 

(2018) investigate the use of shape memory alloys for deformable facade 

shading devices.

fully closed fully opened

Figure 2: Our auxetic linkage is defined as a tri-hexagonal pattern. A 
uniform linkage can transition in the plane between a fully closed state 
(left) and a fully opened state (right) by rotating triangles around their 
connecting vertices. This expansion increases total area by a factor of 
four, which corresponds to a scaling of length by a factor two.

Auxetic meta-materials have been extensively studied in material science; 

see Saxena et al. (2016) for a comprehensive review. Konaković et al. 

(2016) proposed an optimization method for designing curved target 

surfaces that can be fabricated by deforming flat auxetic sheets. In this 

method, the auxetic structure is assumed to be spatially homogenous 

and have the same physical properties everywhere. Deforming such a 

2D sheet material to the desired 3D shape is a complex manual process 

that requires a guiding surface or scaffold. Uniform auxetic materials 

have also been studied in Naboni and Sortori Pezzi (2016) to design ben-

ding-active grid shells. Spatially graded auxetics have been explored for 

freeform reinforced concrete components by Friedrich et al. (2018). They 

introduce an iterative evolutionary optimization process to find a planar 

pattern that conforms to a given target shape when expanded fully. The 

idea of optimizing the spatial layout of flat-produced patterns has also 

been studied by La Magna and Knippers (2018). They investigate how to 

induce controlled curvature through elastic bending of spatially graded 

cellular structures.
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3. Programmable Auxetics
In this section, we describe the basic principles of deployable auxetic 

linkages and briefl y review the post-rationalization approach presen-

ted in Konaković-Luković et al. (2018). Auxetic linkages are initially 

planar assemblies of rigid triangles that connect at hinge vertices in 

the specifi c arrangement shown in Figure 2. This arrangement allows 

the triangles to freely rotate around the hinge points to form openings, 

uniformly expanding the structure in all directions while resisting shear 

deformations. This uniform expansion behavior indicates the pattern has 

an effective Poisson’s ratio of -1 (making it an auxetic structure) and offers 

a key advantage for architectural applications: it allows the linkage to 

be shaped into double-curved surfaces, unlike inextensible sheets of 

material, which can only bend into developable surfaces

As the linkage progressively expands, eventually its openings become 

regular hexagons, and its pattern of rigid triangles and holes forms a 

trihexagonal tiling known as a.

initial 2D state

fully expanded

length 1.00 2.001.731.29

area 1.65 3.001.00 4.00
expansion in

Figure 3: This allows controlling the deployed  expansion factor within 
the range of one, when already fully opened in the rest confi guration 
(left), to two in length resp. four in area, when fully closed in the rest 
confi guration (right).

Kagomi lattice, see Grünbaum and Shephard (1986). In this fully opened 

confi guration, the linkage has stretched from its closed confi guration by 

a length scaling factor of two, and further expansion is blocked.

The deployable auxetics introduced in Konaković-Luković et al. 

(2018) leverage this fully expanded state as a mechanism for rapid 

deployment (Fig. 1). Observing that applying a specifi c spatially-varying 
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stretch λ to a fl at sheet forces it to assume a unique shape (up to 

isometric deformation), the authors propose a spatially graded linkage 

that reaches its fully extended state exactly when stretched by λ. The 

key idea is to fabricate a planar linkage that is already partially opened: 

pre-opening the linkage by different amounts λpre at each point effec-

tively programs a spatially varying maximum stretching factor λmax = 
2⧸λpre (Fig. 3). If we program a planar linkage with the specifi c scaling 

fi eld λmax corresponding to some desired curved shape and subsequ-

ently apply an expansion-driven deployment process like infl ation or 

gravitational loading, the process will automatically terminate when this 

scaling limit is hit; the resulting fully opened deployed linkage will form 

a trihexagonal tiling of the desired 3D surface. Note that pre-opening 

the linkage by different amounts in different regions requires varying the 

linkage’s triangle sizes (Fig. 3).

fixed

set to circle

gravity 

smoothing

free

expand

fixed

fixed 

gravity

fixed

free

expand

scale factors

boundary

dynamics

2D
rest state

3D 
top view

3D 
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prescribe

free

collisions

scale factor
set to 2

Figure 4: A simple form-fi nding example to illustrate our atomic editing 
operators and their effect on the auxetic structure. After prescribing scale 
factors, we resolve collisions which expands the material in the plane. 
Applying gravity forces pushes the linkage to a deployed state. However, 
when applying full expansion, we observe that the surface cannot be 
realized as a height fi eld, mainly due to the sharp transition in scale 
factors. After smoothing the scale factors and letting the boundary evolve 
freely, we obtain a consistent height fi eld surface. Finally, we show how 
to constrain the boundary onto a circle curve.
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Konaković-Luković et al. (2018) have shown that a large and well-defi-

ned class of surfaces can be rationalized with deployable auxetics. 

Specifically, they prove that a stretchlimited surface can be deployed 

with inflation if and only if the target surface has positive mean curvature 

 everywhere (where  is the outward-pointing normal vector). 

Similarly, a height field surface can be deployed via gravity if and only if 

it has positive mean curvature. Surfaces not meeting these requirements 

can be projected to the nearest positively curved surface with a mean 

curvature flow process described in the paper. There are additional 

mechanical restrictions imposed by the linkage pattern: the range of 

length scale factors should fit between one and two.

The post-rationalization pipeline proposed in Konaković-Luković et al. 

(2018) builds on the close relationship between the auxetic linkage pat-

tern and conformal maps. Like auxetic linkages, conformal maps permit 

uniform scale distortion but prohibit shearing deformations. Consequ-

ently, the map from the linkage’s planar configuration to the deployed 

3D surface is nearly conformal, and a conformal map from the plane to 

the desired curved surface can be approximated by a linkage (provided 

its conformal scaling factors fall within the permissible range). This 

motivates the use of a discrete conformal map to initialize a joint 2D/3D 

optimization to find the parameters of the auxetic linkage that best app-

roximates the design surface when maximally stretched everywhere. For 

more details on this optimization, we refer the reader to their paper.

4. Design space exploration and 
form-finding
As discussed above, the desired target shape in the deployed state 

can be programmed into the auxetic structure by optimizing for suitable 

maximal expansion factors across the linkage, which in turn determine 

the spatial layout and sizing of linkage triangles. The indirect nature 

of this post-rationalization provides only limited support for exploring 

design alternatives or discovering new forms that are directly informed 

by the material and deployment mechanism. More direct manipulation is 

required to offer interactive design control in a tight feedback loop.

However, trying to manipulate the deployed geometry by directly 

displacing linkage vertices is not appropriate since the consistency of 
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by the material and deployment mechanism. More direct manipulation is 
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However, trying to manipulate the deployed geometry by directly 

displacing linkage vertices is not appropriate since the consistency of 
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the design cannot be easily maintained. Linkage vertices would need to 

be moved in a coordinated way to respect the complex global coupling 

imposed by the material structure and deployment mechanism, which 

becomes virtually impossible without computational support.

This is why we propose interactive, optimization-assisted design 

operators. Specifically, we allow the designer to directly modify the max-

imal scale factors of the linkage and impose design-specific geometric 

constraints. We then apply optimization to jointly determine the 2D rest 

shape and the 3D deployed shape. Since this optimization can be exe-

cuted at interactive rates, the designer gets immediate feedback on her 

edits, while being freed of the complexities of maintaining consistency of 

the structure.

We found that the following editing operators yield an effective tool-

box for design space exploration:

 » Prescribing scale factors: We provide a painting interface where the 
designer can directly prescribe the desired maximal scale factors in 
the allowable range [1, 2]. Increasing scale factors allows the material 
to stretch more under deployment, while reducing scale factors  
locally shrinks the deployed surface.

 » Smoothing scale factors: Sharp transitions in scale factors can lead 
to nonsmooth surface appearance and, in extreme cases, surface 
wrinkles. Spatially averaging the scale factors evens out these va-
riations and generally leads to smoother deployed surfaces. Con-
trolling the amount of scale factor smoothing yields different design 
alternatives.

 » Boundary control: The user can directly edit the 3D boundary curves 
of the design and control the behavior of boundary linkage vertices, 
which can slide along boundary curves. Since the boundary has a 
strong influence on the overall shape of the deployed surface, we 
also allow boundary linkage triangles to deviate from equilateral 
shape, which can improve the overall surface quality.

 » Geometric constraints: The user can further control the geometry of 
the deployed surface by imposing additional geometric constraints, 
for example on the planarity of certain edge curves, symmetry of 
selected vertices, or smoothness of the surface.

We also provide a separate form-finding optimization for the boundary 

curves. This can be helpful when the total area of the chosen linkage is 

not well-suited for the imposed boundary curve, e.g., when there is too 
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much material or too little for the surface to conform to the boundary. In 

such cases, we apply an expansion force on the linkage to fully expand 

the hexagonal openings and let the boundary vertices move freely to 

their preferred positions. Figure 4 illustrates how these design operators 

can be employed in an interactive form-fi nding design.

Mars habitat

Pavilion

Interior

Hybrid Shell

planar rest state deployed state

1036 triangles,
inflation

1102 triangles,
inflation

1750 triangles,
gravity

3*693 triangles
gravity

deployed state

1102 triangles,

Figure 5: Four design examples shown in planar rest confi guration and 
fi nal deployed state. The number of auxetic linkage triangles and 
deployment method is indicated. In the bottom row, the highlighting 
shows three sets of vertices and edges that are each constrained to lie 
on a plane in the deployed 3D model to create planar support beams. 
See Figures 6 to 9 for detailed renderings.
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Figure 6: Multi-layer shading pavilion deployed by gravity.

 104 AAG2018  105

4.1 Algorithm

Our interactive design system runs a constraint-based optimization 

algorithm to provide direct visual feedback on the flat and deployed 

state of the auxetic linkage. This optimization is based on the projective 

approach of Bouaziz et al. (2014); Deuss et al. (2015) that allows combi-

ning different geometric constraints to model the material behavior and 

the dynamics of the deployment mechanism.

Painting or smoothing scale factors provides constraint targets for 

the triangle edge lengths. We apply point-to-curve constraints to limit 

the movement of boundary vertices to the boundary curves. When 

optimizing for the boundary, we apply circle constraints on the hexago-

nal openings to expand the surface, as the maximal area is achieved 

when all hexagon vertices lie on a circle, see Niven (1981), page 236. 

Additional geometric constraints, e.g., planarity of user-selected edge 

curves in the deployed state, can easily be formulated on the linkage 

vertices. Gravitational deployment is modeled with a constant downward 

force, while inflation is approximated by outward-pointing normal forces. 

These forces are converted into geometric constraints in an implicit time 

integration solver as discussed in Bouaziz et al. (2014). 

During editing, the constraint-based optimization solves for the 

linkage vertex positions in the flat 2D state and the deployed 3D state 

to provide immediate visual feedback on the performed edits. For more 

implementation details and an open-source library of the projection- 

based solver, we refer to www.shapeop.org.

5. Application case studies

We illustrate the potential of our computational design approach with 

a number of application case studies for deployable auxetic structures. 

The design process starts with an initial 2D triangular linkage, either 

obtained by the post-rationalization process of Konaković-Luković et al. 

(2018) or simply created as a uniform triangle pattern when designing 

from scratch. We then apply a series of editing operations as described 

above to explore design alternatives. The final output of this interactive  

form-finding process is a specific triangular linkage with spatially varying 

triangles that can be fabricated and assembled in the plane and deployed 

automatically to  the desired target shape. Four example designs are 
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summarized in Figure 5 and  described in more detail below.

Figure 6 shows a design study of a shading pavilion, realized as a 

linkage of inextensible fabric triangles that are connected with ring joints 

at the triangle vertices. As a hanging structure, the surface deploys 

under gravity to its desired  double-curved target state. This design has 

been created in an interactive formfinding  process from a uniform auxe-

tic linkage that is subsequently manipulated  using our design operators 

to create three design variations. These are combined in a multi-layer 

structure, which allows designing spatially varying opacity to optimize the 

shading performance of the structure for the anticipated use case.

Figure 7 shows another gravity-deployed structure in an interior 

space, with potential  use cases of acoustic dampening or decoratively 

Figure 7: Interior decorative cladding. This hanging structure has been opti-
mized to align with the boundary constraints imposed by the ambient space. 
The designer controls the  shape by interactively modifying scale factors.
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masking of functional components  such as AC pipes or wirings. This 

example shows how manipulating scale factors  in combination with 

detailed boundary control offers effective ways to integrate a deployable 

auxetic structure into an existing space with precisely defined boundary  

constraints.

Figure 8 shows a speculative design study for habitats on Mars. 

Since the atmospheric  pressure on Mars is 100 times lower than Earth’s, 

the interior must be pressurized. This motivates the use of inflatable 

structures that can be efficiently erected from flat configurations, 

offering the additional benefits of low weight and compact storage. Our 

deployable auxetics offer a rich design shape space, so we can optimize 

the shape of the freeform domes to match interior space objectives.

Figure 8: Inflatable freeform dome for a potential Mars habitat.

In Figure 9, we demonstrate how we can incorporate additional geo-

metric constraints to optimize the design. In this example, we impose 

planarity constraints on selected  edge and vertex curves of the auxetic 

linkage to form structural arches that can  reinforce the inflated shell. 

The planarity of these arches significantly simplifies their fabrication. 
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Figure 9: A hybrid shell structure integrates planar support arches in the 
interior into a deployable auxetic surface.
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6. Conclusion
We have shown how optimization-assisted shape exploration yields an 

effective  method for designing deployable structures based on auxetic 

triangular linkages. By directly manipulating the form-defining geometric 

properties, i.e., the material scaling  and the surface boundary, the designer 

obtains full control of the deployed shape  while being shielded from the 

complexity of maintaining consistency between the 2D assembly state 

and the 3D deployed state. Automatic deployment via inflation or  gravity 

allows transforming compact flat assemblies into freeform surfaces 

without  the need of any supporting structures or complex construction 

process. Fabrication  requires only 2D technologies such as sawing 

or laser cutting to produce the triangular panels. Despite this inherent 

simplicity, expressive freeform surfaces can be realized  for a variety of 

different use cases.

A number of open questions offer numerous opportunities for future 

work. So far, we did not address questions of structural integrity in a 

systematic way, nor did we incorporate performative objectives into the 

optimization. For example, light transmission of the shading pavilion or 

the acoustic dampening for the interior cladding design study could 

be directly integrated into the form-finding method  to yield a more 

informative shape exploration process. Another important topic for future 

work is the design of joint connections, in particular ones that lock into 

a stable state when deployed to the final target configuration. Finally, we 

see interesting research potential in exploring other expansive deploy-

ment mechanisms, for example  based on material swelling, motorization, 

or pre-stressing.
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Abstract 
Cooperative robotic fabrication enables the development of new types 

of spatial structures, provided that assembly sequence and robot 

path-planning is considered in the design process early on. This paper 

presents a design strategy for a lightweight steel structure assembled 

by two robots. The developed structure describes a novel typology of 

spatial structures and consists of steel tubes that form spatial confi-

gurations through their three-dimensional aggregation. The bars are 

joined notch-free through welding and without additional connecting 

elements. Besides fabrication-driven constraints, the design process is 

informed by functional, geometric and structural parameters. The paper 

presents the development of a novel connection system and the resul-

ting dependencies for the geometric and structural system, as well as 

a four-step computational design method that allows to explore a large 

area of the design space of such structures. Optimisation methods are 

employed to solve the complex dependencies of the presented structures 

and find a valid design. 

Figure 1: Multi-robotic assembly of spatial structures. 
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1. Problem statement
The introduction of robotic manufacturing methods in architecture and 

construction has augmented the range of the design possibilities that 

are currently available. Particularly processes that require assembly profit 

from the robot’s capacity to precisely hold, move and position an element 

in three-dimensional space. Through the use of industrial robotic arms 

for the placement of discrete elements, it has become possible to build 

bespoke structures with elements of non-standard dimensions, which 

can be freely placed in numerically defined positions and orientations 

(Helm et al., 2017). This greatly increases the design space of spatial 

structures, allowing more geometric freedom than manually assembled 

structures. However, the robotic assembly procedure also introduces 

new constraints, such as robot reachability and sequencing. In addi-

tion, the higher geometric complexity requires advanced computational 

methods in order to handle the large number of dependencies during 

the design process.  

Addressing these new possibilities, this paper presents a design 

method for a new typology of spatial metal structures consisting of steel 

bars (round hollow profiles) that are assembled by two robots and an 

implementation of a corresponding computational design tool in Python. 

The bars have individual lengths and are welded manually after being 

robotically positioned. The assembly method relies on the use of two 

robotic arms, which alternatingly place elements in space (Parascho et 

al., 2017) such that while one robot places a new element, the other one 

serves as support for the already built structure (Mirjan, 2016) (Fig. 1). This 

results in a fabrication method that does not require additional support 

structures or scaffolds. Furthermore, the alternating placing of elements 

prevents the accumulation of tolerances as both the supporting robot 

and the one placing an element serve as a reference.  

The design process is based on this sequential fabrication procedure 

in order to ensure successful fabrication. Related research projects 

where robotic fabrication directly informs the design process applied 

constraints in particle spring models (Parascho et. al., 2015) or predefi-

ned the potential design scope through constraining the assembly logic 

to, for example, layer-based systems (Apolinarska, 2016). However, these 

strategies do not prioritise the fabrication sequence and describe it as 

either a pre-defined order or a post-rationalisation step. Defining the 

assembly sequence directly in the design process leads to a reinter-
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pretation of fabrication as a main driver for the design. This enables the 

design process to explore buildable geometries while generating them 

and not constrain the solution space artificially beforehand to predict a 

feasible design space. 

In addition to fabrication, the design requires to consider other 

factors, such as geometric rules, structural behaviour and functionality. 

Strategies to simultaneously address multiple of these parameters in 

the design process are difficult to identify due to the large number of 

parameters and their different nature (discrete, continuous, binary). One 

possible method implies the use of optimisation to improve material 

efficiency, robot reachability or stability. However, problems of discrete 

nature require different optimisation methods than continuous ones. As 

a result, this research proposes a combination of methods to negotiate 

between the individual design problems.

2. Design procedure
The design procedure follows four steps which individually address 

one or more of the different design constraints (Fig. 2). The following 

presents an overview of these steps which are described in detail in the 

subsequent sections. The design is generated by adding bars one by 

one, defining the order which will later reflect the fabrication sequence. 

Each bar must fulfil following requirements: a) its position must allow to 

connect to two existing bars of the already defined structure, b) its posi-

tion must guarantee stability during assembly and in the structure’s final 

state and c) the robot has to reach its placement pose without collisions.

 

 

Figure 2:  Design workflow describing involved sub-processes and vari-
ables to be defined or changed in each step.
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Figure 3:  Design workflow, step 2: topology definition. A new vertex is 
chosen and connected to the existing structure via three bars. The input 
vertices are pre-defined and connections are chosen based on structural 
considerations.

 

Figure 4:  Design workflow, step 3: structural optimisation. Locations for 
vertices are refined to minimise the material usage for a given load case.

In short, the generation process can be summarised as follows: In step 

1 a set of points (which will be referred to as vertices) is defined that 

describes a goal-geometry by being distributed in a given boundary 

geometry. This input set includes the points’ sequence, pre-defined 

support points and a given load case (position and magnitude of one or 

more point load vectors). In step 2 the topology is established: for each 

consecutive vertex, three bars are created that connect it to the already 
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defined structure, forming a stable configuration (Fig. 3). Due to the 

chosen connection logic, each bar has to touch at least two existing bars 

(see Section 3). The two bars to connect to are chosen such that the 

stresses in the structure are minimised (see Section 6.1). This process, 

run through all input vertices, defines the connectivity between elements 

of the structure, which remains constant in further steps. In step 3 the 

structure is optimised for structural behaviour by refining the positions/

coordinates of the input vertices via an optimisation process (Fig. 4) 

(see Section 6.2). Finally, in step 4 fabrication data, including final poses 

for bars and robotic paths, is generated. The design and analysis tools 

are implemented in python using the COMPAS library (Van Mele et al., 

2017) and are thus CAD independent. Visualisation of the results is done 

in Rhinoceros 3D (McNeel, 2015).

Figure 5: Example of options for three connections from a new vertex to 
the existing structure.

3. Geometric system
The chosen design strategy is based on the sequential definition of the 

bars’ positions in space. In addition to fabrication feasibility, this ensures 

that geometric dependencies that require knowledge of previously pla-

ced bars are fulfilled. The final structure consists of groups of three bars 
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which form stable sub-structures and lead to a structurally determinate 

system. These groups will be referred to as three-bar-groups. Since the 

system is not restrained to a regular geometry, multiple options of con-

nections are possible for a vertex (Fig. 5). The choice of connections is 

performed in the topology definition step which is described in Section 6.1.

3.1 Node configuration 
Fabrication efficiency and structural performance of spatial structures 

are strongly influenced by the chosen connection system. Standardised 

systems use identical connection elements and same-lengths bars, 

for example the Mero system (Chilton, 2000), which leads to a simple 

fabrication process but limits the design to regular space frames. For dif-

ferentiated space frame structures individual elements can be produced 

but require precise prefabrication and lead to an increased logistic effort 

in their assembly. 

 

Figure 6:  Definition of node, sub-node and joint. A node develops out of 
every vertex once bars are generated around it.
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The presented research addresses these limitations of prevailing 

connection systems through the proposal of a novel node for spatial 

structures, which can potentially be fully integrated in the robotic fabri-

cation process and does not rely on additional prefabricated elements. 

In the context of this paper the term node has been defined to include 

all connections that topologically come together in one vertex point. A 

sub-node represents all connections forming a reciprocal configuration 

between three or more bars in a node, while a joint refers to a single 

connection between two bars (Fig. 6). 

In the proposed geometric system, a node is composed of a cluster 

of joints, which connect no more than two bars at a point. However, this 

node configuration reduces the stiffness of the overall structure through 

introducing bending moments in the bars. To counteract this effect, 

the stiffness of the node is increased through connecting each bar 

additionally in a second point to another existing bar, leading to closed 

reciprocal sub-nodes (Fig. 7). 

 

Figure 7:  Geometric development of node in an aggregation of 6 bars.

In order to generate the reciprocal sub-nodes in the design definition, 

one needs to find the possible solution space for newly added bars that 

fulfil the geometric constraints of a node. Visualising all possible angles 

of attachment for a tangent line to two given bars allows to identify 

areas where no solution exists (Fig. 8). This leads to discontinuities 

in the descriptive function which need to be taken into account in the 

input and topology definition process (steps 1 and 2) as well as in the 

optimisation process (step 3) (see Sections 6.2, 6.3). For steps 1 and 2, if 

vertices are located in areas where no solution exists, a correction pro-

cess is performed which moves the vertex to the closest feasible point 

of the solution space. 
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Figure 8: Visualisation of the solution space for a bar tangent to two 
existing bars. The volume shows all possible angles of attachment for a 
new bar and two fixed existing ones.   

The very vast, but still locally constrained solution space additionally 

shows the necessity of implementing computational methods in order to 

be able to explore the entire geometric design space of the developed 

system. 

Figure 9:  Sequential adding of three bars onto an existing structure 
leading to two joints, three joints and four joints.

3.2 Calculation of bar positions 
The described node configuration leads to various geometric depen-

dencies within the system. A bar needs to be tangent to two, three or 

four existing bars accordingly, depending on whether the considered 

bar is the first, second or third to be added among the three new bars 

of a vertex (Fig. 9). For any bar connecting to two existing bars, four 

solutions can be found depending on which side it attaches to (Fig. 10 

right). These options are used to either react to collisions or if a robotic 

path cannot be found (see Sections 4 and 6). The position fulfilling the 

geometric constraints of two, three or four tangent connections is found 

by the calculations shown in the following three cases. 

 120 AAG2018  121

The described node configuration leads to various geometric depen-

dencies within the system. A bar needs to be tangent to two, three or 

four existing bars accordingly, depending on whether the considered 

bar is the first, second or third to be added among the three new bars 

of a vertex (Fig. 9). For any bar connecting to two existing bars, four 

solutions can be found depending on which side it attaches to (Fig. 10 

right). These options are used to either react to collisions or if a robotic 

path cannot be found (see Sections 4 and 6). The position fulfilling the 

geometric constraints of two, three or four tangent connections is found 

by the calculations shown in the following three cases. 

Figure 10: Dependencies between three tangent bars (left) and four 
possible solutions for one bar tangent to two other bars (right).

Case 1: For the first bar of a three-bar-group bn1 its centreline ln1 has to 

be found, such that it touches the two other bars be1 and be2 passing 

through a given vertex point Pr (Fig. 10, left). This can be described 

through calculating a line which is tangent to two cylinders C1 and C2 de-

fined by the axes of the existing bars le1 and le2 and a radius equal to the 

sum of the existing bars’ radius re1 or re2 and the radius of the bar to be 

added rn1. This problem is mathematically determinate and can be solved 

as follows (Fig. 11, left): the line ln1 is calculated at the intersection of 

the planes p1 and p2 that pass through the given point Pr and are tangent 

to the two cylinders defined by the given bars axes and the determined 

radii.

   

Figure 11: Case 1. Calculation of the first bar tangent to two existing 
bars b1, b2 (left). Calculation of a vector vt tangent to a cylinder through a 
given point Pr (right).
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Figure 11: Case 1. Calculation of the first bar tangent to two existing 
bars b1, b2 (left). Calculation of a vector vt tangent to a cylinder through a 
given point Pr (right).
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The planes p1 and p2 are calculated through Pythagoras relations in the 

following triangles (Fig. 11, right):  AMPr resulting from the vertex point 

Pr , M (the projection of Pr onto the bar’s axis (le1 or le2)) and A (the point 

resulting from the intersection of the perpendicular through M to PrM 

and the tangent to the cylinder PrA) and AMB described by the Points 

A, M and B (the intersection between the radius MB perpendicular to 

the line PrA). The sought tangent plane is defined by the point Pr , the 

vector vt and the vector of the bar’s axis (le1 or le2).

Figure 12: Case 2. Calculation of the second bar tangent to two bars at 
the base and the already defined first bar at the top.

Case 2: The axis of the second bar bn2 can be found by searching for a 

point on the circumference of a cylinder Cn2 (Fig. 12) defined by the axis 

of the element bn1 and the radius r = rn1 + rn2 such that the resulting line 

ln2 is tangent to Cn2. Pr describes the input vertex point through which the 

axis of the first bar bn1 passes and t the parameter between 0 and 1 on a 

circle perpendicular to the axis of the first bar and with a radius r equal 

to the sum of the radii of the existing first bar and the bar to be placed. 

From each resulting Pn on the circumference of Cn2 a line ln2 tangent 

to the two given bars be1 and be2 can be calculated. A search method 

is needed to find such point Pn that this line is tangent to the first bar, 

i.e. the angle . This is achieved by minimising the function 

. Pn is expressed through x and its position is calculated 

in relation to Pr through the coordinate system described by ex and ey.

Case 3: The axis of the third bar bn3 can be found by searching 

through points on a plane pm (Fig. 13) which has been defined perpendi-

cular to the vector connecting the base vertex position in a point M and 

(x)
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cular to the vector connecting the base vertex position in a point M and 

the new vertex position. The vectors ex and ey define a new two-dimensi-

onal coordinate system with origin in M where ex and ey describe the 

orientation of the plane pm and e1 and e2 the coordinates of a point Pn in 

this new coordinate system. Through the resulting point Pn two tangent 

lines ln31 and ln32 can be calculated, one to the two bars be1, be2 and one to 

the already calculated first two bars of the group (bn1, bn2). The goal of 

the search is to find the point Pn on the plane pm in which the two 

calculated tangents are collinear, i.e. the angle . This is found 

through minimising a function .

Both searches for case 2 and case 3 have been implemented using 

SciPy’s optimisation library (Jones et al., 2001) and its minimisation 

function fminbound() which relies on Brent’s method for finding a local 

minimum of a scalar function (Brent, 1973). 

The developed connection system has been tested for feasibility in 

a physical prototype, where a structure consisting of thirty-three bars, 

including a central node with fourteen elements was designed and 

assembled with two robotic arms of the Robotic Fabrication Laboratory 

(RFL) at ETH Zurich (Fig. 14). In theory a node can be infinitely expan-

ded to incorporate more bars, as long as physical collisions between the 

bars are avoided. In practice, the maximum number of bars in a node 

is strongly dependent on the attachment angles of the bars and the 

chosen connection bars and sides.  The prototype additionally served 

for identifying fabrication challenges such as tolerances resulting from 

the robotic set-up. These ranged up to ± 3 mm and were dealt with by 

slightly forcing the elements until they are tangent to their neighbours. 

It was also shown that tolerances do not add up over time, as the robot 

positioning a new bar serves as a reference for the structure at every step.

Figure 13: Case 3. Calculation of the third bar tangent to two bars at 
the base and the already defined first and second bars at the top. 
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Figure 13: Case 3. Calculation of the third bar tangent to two bars at 
the base and the already defined first and second bars at the top. 
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Figure 14: Physical test of a structure in which 14 bars come together in 
one node. 
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4. Fabrication feasibility evaluation
The described geometric system is a direct result of the robotic 

fabrication procedure, allowing two robots to cooperatively assemble 

spatial structures while ensuring stability and simple connection of the 

elements. However, the cooperative assembly method strongly depends 

on the sequence of placing elements, which determines the buildability 

of the structure. Beside assembly sequence, reachability and trajectory 

planning need to be taken into account during the design process. 

The chosen strategy is to evaluate the buildability at two steps: first, 

during the topology definition process (step 2) and second, after the 

structural optimisation process (step 4). The main goal of these evalu-

ations is to identify whether bar positions are reachable by the robotic 

arms, and whether collision-free robot trajectories can be found to 

place each bar in the given sequence. For this purpose, a path planning 

method relying on random sampling algorithms is integrated into the 

computational set-up and used to search for feasible paths (Gandia 

et al., 2018). The path planning algorithm requires a starting configura-

tion and a final pose to be reached as an input and results in a list of 

joint values describing the collision-free movement of the robot. Three 

parameters can influence the success of this procedure and need to be 

defined during the design process: 1. the robot assigned to place the bar, 

2. the gripping position and orientation on the bar and 3. the final pose 

to be reached by the robot. The assignment of the robot placing the bar 

is performed within a three-bar-group such that it ensures the stability of 

the structure throughout the placing process. It is based on the logic that 

the first and third bar of a three-bar group can be placed by any of the 

two robots while the second bar needs to be placed by the other robot 

than the one that placed the first bar. An initial assignment is performed 

by approximating which robot has better reachability, but is changed 

if no path can be found for the placement of the bar. In order to find 

collision-free paths, different gripper positions and orientations can be 

tested until a feasible one is found. The path planning process does not 

calculate a trajectory to the final position of a bar, but to a translational 

and rotational offset pose that guarantees that a linear robot movement 

towards the final position does not encounter collisions. This is done to 

induce more flexibility into the path planning process since this pose 

can be adjusted if no path is found. In both fabrication evaluations the 

following process is performed: For each bar, a path is searched for and 
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if a collision-free one cannot be found parameters are changed from 

local ones to global design ones (Fig. 15).

Figure 15: Workflow for the generation of robot paths. If no path is 
found for a bar parameters are changed from the right to the left.

Due to the low speed of the path planning process, requiring 30 to 60 

seconds per bar, its use has not been fully automated in the computa-

tional geometry generation process. However, path planning checks are 

performed after the topology definition (step 2), in order to early identify 

situations where no path can be found, and in a final step before fabrica-

tion (step 4) in order to generate fabrication data.

5. Integrated structural analysis

The investigated geometric system shows high complexity in load bea-

ring behaviour. On the one hand, this means the interplay of geometric 

parameters and structural performance is not obvious, thus strategies 

for geometric changes to improve the structural behaviour are difficult 

to define. On the other hand, complexity means the system is statically 

sensitive to changes in geometric configuration, hence slight geome-

tric modifications of the structure may have a very large impact on its 

load bearing performance. A major reason for these behaviours is the 

reciprocity of the nodes, as for example shown by investigations of 

reciprocal frame structures in (Kohlhammer 2014) and (Kohlhammer et 

al., 2017). Due to this complexity, structural optimisation of the discussed 

system is a highly non-trivial problem and can only be solved through 

iterative tools. These require a fast structural analysis to evaluate a large 

number of parametric system states. 
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In consequence of this, the computational design environment includes 

algorithmic methods of structural analysis, which enable immediate 

feedback about the static performance of the system during the design 

and optimisation process. To establish a direct and seamless integra-

tion, the structural analysis is implemented in the same environment as 

the geometric design. Figure 16 shows the workflow of the developed 

structural analysis, which is divided in the three following steps: model-

ling, calculation and evaluation.

Figure 16: Workflow diagram of the integrated structural analysis. The 
structural analysis is used in step 2 and 3 of the design process.

5.1 Modelling 
As a basis for the structural analysis, an appropriate static model with 

linear elements is generated. It is an abstraction of the real volumetric 

geometry and includes two types of elements: 1. bars which represent 

the steel rods and 2. connectors which represent the welded connec-

tions of two rods (Fig. 17). For each single element translational and 

rotational stiffness values have to be defined in order to emulate the 

real structural behaviour of the system. While for bars these values are 

defined by respective cross-section geometries and material properties, 

for connectors a specific mechanical model was assumed based on 

positions and geometries of the weld points which connect two steel 

rods. This model was verified by physical test series. The tests were 

performed on single nodes with two or four welding points and five force 

directions (compression, tension, shear and two rotations). In addition, 

the tests showed very little deviations of the values throughout a test 

series, meaning that the welds display a similar behaviour even if they 

are executed manually.
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Figure 17: Geometry of part of the system (left) and corresponding 
linear static model (right).

5.2 Calculation 
As a result of assumed load scenarios the inner forces and deformations 

of bars and connectors are calculated. Therefore, a direct interface to an 

FEM engine was established. In this case the finite element base engine 

(feb) of the static analysis software Karamba (Preisinger et al., 2015) was 

used, which is a fast and programmable finite element core.

5.3 Evaluation
In the final step of the analysis the calculated inner forces and defor-

mations are evaluated for every bar and connector of the static model. 

The evaluation is based on the criterion of utilization u. In this research, 

u is defined as the ratio of an inner force to its corresponding maximum 

value which is here represented by the yield point. For bars this evalua-

tion corresponds to the Swiss steel codes SIA 263. For connectors the 

calculated inner forces are transformed into a resulting force-vector F as 

well as a resulting moment-vector M. Both refer to the contact point C 

of two steel rods which is equal to the midpoint of the shortest distance 

line between the two axes of connecting bars (Fig. 17). Each compo-

nent of F (Fx ,Fy ,Fz ) and M (Mx ,My ,Mz ) has a resistance, represented by 

the maximum possible value of the component. The connector-resistan-

ces result from the same mechanical model as the stiffness values and 

were also verified by test. As in general all inner-force-components exist 

simultaneously, resistance boundaries for force-interactions have to be 

assumed. Resistance values and interaction boundaries define a specific 

resistance graph (Fig. 18) for each connector. If this graph is displayed 

together with the existing force-vector, the utilization u of a connector 

can be visualized through the length of the vector in relation to its maxi-

mum possible length within the resistance graph. In addition to stresses 
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in the bars and connections, utilisations in regards to deformation and 

stability are calculated. However, these results have not been integrated 

in the design procedure, but will be included in the next iteration of the 

design tool. 

Figure 18: Example of a resistance diagram of a connector with existing 
force-vector and maximum graph.

6. Generation and optimisation

The design problem with its multiple constraints and parameters requires 

both continuous and discrete considerations. Discrete parameters are: 

the nodes to connect to from a new vertex, the bars to connect to in the 

nodes and the sides of the connections, while the continuous parameter 

describes the location of the vertices in space. To address this multitude 

of parameters, an algorithm was developed that treats topology gene-

ration and optimisation in a two-stage process (Fig. 2, steps 2 and 3). 

The number of possible combinations of discrete parameters increases 

drastically with the structure’s overall number of vertices. For example, 

there are over 200 000 000 possible topologies for a structure with only 

9 vertices. Treating the topology generation separately thus allows to 

decrease the dimension of the search space. 
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decrease the dimension of the search space. 
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6.1 Topology definition

The goal of the topology definition process (Fig. 2, step 2) is to identify 

for every new vertex the three topological connections that induce the 

least amount of stresses on the bars. The main reason for this is that 

the subsequent structural optimisation process requires an initial guess 

which fulfils the given constraints, in this case, that bar stress utilisa-

tion values are not higher than 1.0. For this purpose, for every vertex in 

the structure’s sequence, potential connection vertices to the already 

generated nodes are identified within a given distance and combinations 

of three such nodes are generated. These combinations are evaluated 

by calculating the three new bars’ positions, generating their geometries, 

defining an approximated load case for the current structure’s state, 

analysing the resulting structure’s structural behaviour and evaluating 

the option through the total value of stress utilisations in the bars. The 

load case is defined by moving the final load case’s force vector to the 

current vertex position and adding a moment vector that represents an 

approximation of the bending moment that the structure would experience 

at the vertex point in the final state. This moment vector is calculated as 

a vector connecting the current vertex and the final location of the force. 

For this step, only the connectivity between the nodes has been consi-

dered, while other discrete parameters are used to ensure the geometric 

integrity of the design. This is done through a collision check that is 

performed throughout the topology definition for every newly generated 

bar to identify intersections with the existing geometry. If collisions are 

found, the connection side and, if necessary, the bars to connect to are 

changed until a feasible solution is found. 

A brute force approach was chosen to iterate through all connec-

tivity options. The objective was defined as finding the option with the 

smallest total stress utilisations value in the bar elements and variable 

values have been limited to a list of potential node indices. As a result, 

the problem was formulated as follows:

minimise  

where x describes a potential combination of 3 nodes to connect to.

However, this topology definition process serves only as an approxima-

tion of an efficient structure, since its evaluation does not rely on the 

final positions of the vertices, which will be refined in the next step, and 
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structural analysis performed on a partial structure does not precisely 

represent its final behaviour, but merely an approximation. 

6.2 Structural optimisation
To further improve the structural performance, the positions of bars are 

refined by allowing the input vertices to change position (Fig. 2, step 3). 

The topology established in step 2 remains unaltered. Vertices that serve 

as support points or desired fixed points are described as fixed vertices 

while all other vertices are defined as variables for an optimisation pro-

cess. This allows to control how constrained a design is, depending on 

the input. Through the defined topology, instances of the design are re-

calculated and analysed using the developed FEM interface. As opposed 

to the topology definition problem, the optimisation problem in this case 

can be expressed as a continuous problem which allows for the use of 

gradient-based optimisation methods (Kraft, 1988). The python opti- 

misation library pyOpt (Perez et al., 2012) with its Sequential Least Squares 

Programming solver (Kraft, 1988) is used for this problem. Since the purpose 

of the optimisation is to improve structural efficiency, decreasing material 

use was chosen as a goal. The objective function is thus formulated to 

minimise the total lengths of bars, while constraining the stress utilisa-

tions of bars to a limit value of 1.0, and thus prevent failure:

minimise:  

  

constrained to:         

6.3. Results
The proposed design process and optimisation were validated through 

modelling tests in which small structures were generated and optimised 

and compared to brute force approach results. The test models all have 

three supports on one side and a point load on the other end of the 

structure, representing a cantilevering structure. This describes an es-

sential test case for spatial structures as it needs to withstand bending 

moments and thus requires structural height. The bars have a diameter 

of 25 mm and a thickness of 2 mm while their lengths vary between 

800 mm and 1 800 mm. 
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Figure 20: Test models for topology definition evaluation. 1. Tension 
loaded structures, 2. Compression loaded structures, 3. Bending loaded 
structures, a) structures with connections to closest nodes, b) structures 
resulting after optimisation.
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The topology definition process (step 2) has been tested on models 

with 10 vertices and 27 bars. To verify the success rate of the proposed 

approach, a series of tests has been modelled and calculated and re-

sults between pre-defined topologies, always connecting to the closest 

three nodes (Fig. 20, a), and the calculated topologies (Fig. 20, b) were 

compared. Three different load cases were tested, by changing the 

orientation of the force vector, generating structures primarily loaded 

under tension (Fig. 20, 1), compression (Fig. 20, 2) and bending (Fig. 20, 

3). For each load case, 5 different structures were modelled by modify-

ing the input vertices’ positions within a distance of 500 mm from their 

initial locations. This resulted in fifteen test structures of which fourteen 

showed improvements in the total added bar utilisation values of 11 % 

(5.71 to 5.07) to 83 % (17.35 to 2.89). Six structures started with a solution 

which included bars with utilisations higher than 1.0 of which four resul-

ted in structures with no bar utilisations higher than 1.0 while the other 

two reduced the number of overloaded bars from four, respectively three, 

to one (Fig. 20). However, the success of the topology definition process 

is strongly related to the initial distribution of points and the given load 

case, as these must ensure that a solution with bars with stress utilisa-

tions lower than 1.0 exists. If this cannot be fulfilled, additional vertices 

have to be added in step 1 and the design has to be recalculated. 

As a test case, one structure was generated which was later also 

used in the structural optimisation tests. For this specific case, improve-

ments of 19.7 % in utilisations (Fig. 21) were achieved. 

 

Figure 21: Example of topology generated by connecting to three 
closest vertices (left) and after the calculation process (right). Bars 
varying between 800 mm and 1800 mm in length, 25 mm of diameter and 
a thickness of 2 mm were used.
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which included bars with utilisations higher than 1.0 of which four resul-

ted in structures with no bar utilisations higher than 1.0 while the other 

two reduced the number of overloaded bars from four, respectively three, 

to one (Fig. 20). However, the success of the topology definition process 

is strongly related to the initial distribution of points and the given load 

case, as these must ensure that a solution with bars with stress utilisa-

tions lower than 1.0 exists. If this cannot be fulfilled, additional vertices 

have to be added in step 1 and the design has to be recalculated. 

As a test case, one structure was generated which was later also 

used in the structural optimisation tests. For this specific case, improve-

ments of 19.7 % in utilisations (Fig. 21) were achieved. 

 

Figure 21: Example of topology generated by connecting to three 
closest vertices (left) and after the calculation process (right). Bars 
varying between 800 mm and 1800 mm in length, 25 mm of diameter and 
a thickness of 2 mm were used.
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The structural optimisation tests were first performed on models with 4 

vertices and 6 bars. Only one vertex was used as a variable to keep the 

model simple (Fig. 22). Since the geometric solution space defined by the 

connection system includes areas with no solutions, small discontinuities 

appear in the objective function (see Section 3.1). It is thus crucial to 

identify if the optimisation process is influenced by these discontinuities 

and, if so, to what extent. To do this, a second simplified geometric sys-

tem was modelled, which does not include the reciprocal connection, but 

is built of bars connecting in one single point in a node. The behaviour 

of the optimisation processes for both models was compared and shows 

that solutions are consistently found for both systems. For validating 

both optimisation results, a brute-force process was implemented that 

iterates through 10 000 point locations and its results were compared 

to the optimisation results (Fig. 23). In both cases the optimised result 

shows a lower function value than the brute force approach. Additionally, 

in order to verify if the optimisation process reaches the function’s mini-

mum, a test was performed in which the optimisation process’ resulting 

point position is used again as an initial guess for the same problem. 

Since the result changed only minimally (less than 10 mm) in 3 iterations, 

it is assumed that for this problem the optimisation reaches the mini-

mum after the first iteration. 

Finally, the method was applied to a larger structure consisting of 27 

bars. The structure results from the topology definition test and serves 

as an initial guess for the structural optimisation process. Its first three 

vertices, which represent the supports, and its last vertex, where the 

point load is applied, are defined as fixed points, while the other vertices 

are set as variables. The method results in a 32 % decrease of material 

volume (Fig. 24) leading to a smaller material usage than the first  

uninformed guess (Fig. 21, left) while additionally ensuring that stresses 

in the bars do not exceed the material capacity. 
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Figure 22: Optimisation results: 1. Simplified model: a) initial guess, b) 
optimisation result; 2. Model including connection: a) initial guess, b) 
optimisation result.

Figure 23: Optimisation results compared to brute force results: 1. 
Simplified model: a) brute force result, b) optimisation result; 2. Model 
including connection: a) brute force result, b) optimisation result.

Figure 24: Example of structure before (left) and after (right) minimising 
material volume while constraining stress utilisations in bars. 



 134 AAG2018  135

The structural optimisation tests were first performed on models with 4 

vertices and 6 bars. Only one vertex was used as a variable to keep the 

model simple (Fig. 22). Since the geometric solution space defined by the 

connection system includes areas with no solutions, small discontinuities 

appear in the objective function (see Section 3.1). It is thus crucial to 

identify if the optimisation process is influenced by these discontinuities 

and, if so, to what extent. To do this, a second simplified geometric sys-

tem was modelled, which does not include the reciprocal connection, but 

is built of bars connecting in one single point in a node. The behaviour 

of the optimisation processes for both models was compared and shows 

that solutions are consistently found for both systems. For validating 

both optimisation results, a brute-force process was implemented that 

iterates through 10 000 point locations and its results were compared 

to the optimisation results (Fig. 23). In both cases the optimised result 

shows a lower function value than the brute force approach. Additionally, 

in order to verify if the optimisation process reaches the function’s mini-

mum, a test was performed in which the optimisation process’ resulting 

point position is used again as an initial guess for the same problem. 

Since the result changed only minimally (less than 10 mm) in 3 iterations, 

it is assumed that for this problem the optimisation reaches the mini-

mum after the first iteration. 

Finally, the method was applied to a larger structure consisting of 27 

bars. The structure results from the topology definition test and serves 

as an initial guess for the structural optimisation process. Its first three 

vertices, which represent the supports, and its last vertex, where the 

point load is applied, are defined as fixed points, while the other vertices 

are set as variables. The method results in a 32 % decrease of material 

volume (Fig. 24) leading to a smaller material usage than the first  

uninformed guess (Fig. 21, left) while additionally ensuring that stresses 

in the bars do not exceed the material capacity. 

 

 134 AAG2018  135

The structural optimisation tests were first performed on models with 4 

vertices and 6 bars. Only one vertex was used as a variable to keep the 

model simple (Fig. 22). Since the geometric solution space defined by the 

connection system includes areas with no solutions, small discontinuities 

appear in the objective function (see Section 3.1). It is thus crucial to 

identify if the optimisation process is influenced by these discontinuities 

and, if so, to what extent. To do this, a second simplified geometric sys-

tem was modelled, which does not include the reciprocal connection, but 

is built of bars connecting in one single point in a node. The behaviour 

of the optimisation processes for both models was compared and shows 

that solutions are consistently found for both systems. For validating 

both optimisation results, a brute-force process was implemented that 

iterates through 10 000 point locations and its results were compared 

to the optimisation results (Fig. 23). In both cases the optimised result 

shows a lower function value than the brute force approach. Additionally, 

in order to verify if the optimisation process reaches the function’s mini-

mum, a test was performed in which the optimisation process’ resulting 

point position is used again as an initial guess for the same problem. 

Since the result changed only minimally (less than 10 mm) in 3 iterations, 

it is assumed that for this problem the optimisation reaches the mini-

mum after the first iteration. 

Finally, the method was applied to a larger structure consisting of 27 

bars. The structure results from the topology definition test and serves 

as an initial guess for the structural optimisation process. Its first three 

vertices, which represent the supports, and its last vertex, where the 

point load is applied, are defined as fixed points, while the other vertices 

are set as variables. The method results in a 32 % decrease of material 

volume (Fig. 24) leading to a smaller material usage than the first  

uninformed guess (Fig. 21, left) while additionally ensuring that stresses 

in the bars do not exceed the material capacity. 

 

Figure 22: Optimisation results: 1. Simplified model: a) initial guess, b) 
optimisation result; 2. Model including connection: a) initial guess, b) 
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Figure 23: Optimisation results compared to brute force results: 1. 
Simplified model: a) brute force result, b) optimisation result; 2. Model 
including connection: a) brute force result, b) optimisation result.

Figure 24: Example of structure before (left) and after (right) minimising 
material volume while constraining stress utilisations in bars. 
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7. Conclusion
The paper presents a method for multi-informed design that combines 

fabrication, geometry, structure and material considerations. Additionally, 

the development of a complex geometric system resulted in a novel 

construction system with a high degree of freedom regarding possible 

topologies and therefore high differentiation potential regarding number, 

positions and length of bars. Describing the geometric relations com-

putationally enabled the exploration of the new geometric system and a 

larger design space than standard spatial structures offer. Moreover, the 

sequence-based strategy combined with an integral fabrication feasi-

bility evaluation allowed to generate designs that are easily buildable, 

despite their geometric complexity. 

The digital and physical tests have shown that the initial design 

space is strongly defined by the fabrication set-up and material pre-

conditions. For example, in a stationary set-up the robotic reach is very 

constrained, whereas the RFL’s 36 axis set-up opens up a lot more geo-

metric possibilities due to the robots’ flexibility of movement. Similarly, 

the structural behaviour depends strongly on the chosen bar dimensions, 

determining whether failure will occur in the bars or in the connections. 

In the presented paper one scenario was investigated, however ex-

panding it to different material systems and fabrication set-ups would 

strongly impact the potential design space.

Using optimisation methods allows for an efficient search of a design 

space but comes with own constraints and limitations. The topology 

definition’s structural analysis (step 2) may lead to redundant bars that 

in a final configuration are not needed to transfer forces. In addition, 

the topology definition process usually increases the material volume in 

order to find a functional solution, which is then minimised throughout 

the optimisation process. Even though in most cases the resulting final 

material volume is smaller than the initial one, finding different strategies 

for the topology definition process could help the optimisation reach 

a better solution. In addition, the continuous structural optimisation is 

strongly dependent on the number of variables, constraints and fixed 

vertices. If the input scenario is geometrically strongly constrained (e.g. 

through many fixed vertices), it does not lead to a high improvement of 

the structural behaviour, whereas if the freedom is too high, it requires a 

long time for calculation. As a result, identifying correlations between the 

input scenario (number of variable and fixed vertices) and the optimisa-
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tion result could improve the efficiency of the optimisation process. Re-

garding step 1 of the design workflow, the presented strategy for input 

generation allowed fast testing of multiple options to evaluate different 

inputs. However, its further development towards not pre-defining input 

points but generating them during the topology definition process could 

allow a more informed input and potentially improve the starting scenario 

for the structural optimisation.

Several other topics can be extended in future research. The 

implementation of a faster path planning method would allow a higher 

level of integration and more direct control over fabrication feasibility. 

Further research could expand the possibilities of the developed design 

method for different structures and geometric configurations, such as 

non-triangulated geometries. Even though optimisation methods lie at 

the core of the described methodology, the presented research attempts 

to address not individual design problems but the negotiation of multiple 

constraints and goals through a combination of methods. Generalising 

this approach into a flexible computational set-up which could integrate 

several solvers and allow different levels of parameter integration and 

geometric design definition could set the base for multi-variable, multi- 

objective design environments. 
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Abstract 
The fabrication and construction of curved beams along freeform skins 

pose many challenges related to their individual and complex geometry. 

One strategy to simplify the fabrication process uses elastic defor-

mation to construct curved beams from flat elements. Controlling the 

curvature of the design surface and beams has the additional potential 

to create repetitive building parts with beneficial beam orientation. We 

aim for strained gridshells built entirely from straight or circular lamellas 

of the same radius and with orthogonal nodes. The lamellas are aligned 

normal to a reference surface enabling an elastic assembly via their 

weak axis and a local transfer of loads via their strong axis. We show 

that the corresponding reference surfaces are of constant mean curva-

ture and that the network of beams bisects principal curvature direc-

tions. We introduce a new discretization of these networks as quadri-

lateral meshes with spherical vertex stars and present a computational 

workflow for the design of such structures. The geometric advantages 

of these networks were key for the fabrication and assembly of a pro-

totype structure, the Asymptotic Gridshell. We describe the complete 

process from design to construction, presenting further insights on the 

symbiosis of geometry, fabrication and load-bearing behavior.

1. Introduction

Gridshells are highly efficient structures because they carry loads 

through their curved shape with very little material. Their construction 

however, poses great challenges related to their complex geometry. In a 

freeform grid every node and every beam are likely to be different and 

have to be fabricated individually using computer aided, 3D manu-

facturing tools. Controlling the curvature parameters of design surfaces 

and beam networks, and using the elastic behavior of material to shape 

these grids opens up new strategies for fabrication-aware design. 

We study structures that can be constructed with congruent nodes 

from lamella that are orientated normal to the underlying reference 

surface and have straight or circular development (Fig. 1). The slender 

lamellas allow for an elastic assembly via their weak axis and a local 

transfer of loads via their strong axis. The lamella network can be trans-

formed elastically following a predetermined kinetic behavior. This 
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lamellas allow for an elastic assembly via their weak axis and a local 
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Figure 1: The Asymptotic Gridshell. The strained gridshell was assem-
bled with orthogonal nodes from straight and flat lamellas, and erected 
elastically. (Image: Felix Noe)

enables a simple erection process without formwork. The final grid forms 

a doubly-curved network, enabling an efficient, spatial load transfer as a 

shell structure. We are interested in the possible shapes, their computa-

tional design and solutions for construction. 

Related work. We follow up on recent work by Tang et al. (2016) on 

curved support structures from developable strips. A prominent example 

of this type is provided by the Eiffel Tower Pavilions (Schiftner et al. 

(2012), Fig. 2). However, this support structure follows principal curvature 

lines and does not lead to lamellas with straight or circular development. 

The design of strained grid structures with the use of developable strips 

has been investigated by Schling and Barthel (2017). 

From the construction perspective our approach is inspired by the 

strained timber gridshells of Frei Otto (Burkhardt (1978)), namely, the 

Multihalle in Mannheim, see Figure 2.

Overview and contribution. We show that the requirements on 

lamellas and nodes lead to special curve networks on surfaces. Circular 

lamellas of constant radius and right node angles live on surfaces of 

constant-mean-curvature (CMC). Our computations use a novel discrete 

representation, namely quadrilateral meshes with spherical vertex stars. 

They generalize the well-known asymptotic nets with planar vertex stars 

(Bobenko and Suris (2008)).

We present a method for the computation of isothermic networks on 

CMC surfaces. The diagonals of such a network form curves of constant 
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Figure 2: Curved grid structures: Left: Multihalle Mannheim by Frei Otto, 
1975. The strained timber gridshell is formed from elastically-bent timber 
laths. Right: The Eiffel Tower Pavilions by Moatti Rivière Architects. The 
facade structure follows the principal curvature directions. The curved 
steel beams were fabricated from flat strips of steel. (Images: Rainer 
Barthel, Michel Denancé)
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normal curvature κn and define the attachment points of lamellas of 

radius r = 1⧸κn  with 90 degree intersection angles. This includes the 

special case of straight lamellas with r = ∞.

The implications of planning and constructing such networks for a 

load-bearing gridshell are described in Section 3. Our case study, the 

Asymptotic Gridshell, was designed using asymptotic curves (vanish-

ing normal curvature) on a minimal surface (zero mean curvature) and 

constructed from straight lamellas and orthogonal nodes. We discuss 

the architectural design process of surface and network, introduce a 

detail solution for a typical grid-joint, and present the fabrication and 

erection process. The load-bearing behavior is analyzed using a novel 

workflow to simulate residual stresses.

2. Theory and computation

Let us briefly recall a few facts from differential geometry. It will be 

helpful to know about the Darboux frame which is attached to a curve c 
on a surface S. Let c(s) be an arc length parametrization of that curve. 

At each point c(s), the Darboux frame consists of the unit tangent vector 

t(s), the unit vector n(s) orthogonal to the surface S, and the sideways 

vector u(s) = n(s) × t(s), see Figure 3. As the frame moves along the 

curve, at any time s the angular velocity vector d is given by

Its coefficients are important quantities of the surface curve c: ge-

odesic curvature κg, normal curvature κn and geodesic torsion 

τg. The derivatives of the frame vectors with respect to s satisfy 

t′ = d × t, u′ = d × u, n′= d × n: Inserting the above expression for d, 

one finds

Thus, κg and κn are the tangential and normal components of the curva-

ture vector t′, and τg is the normal component of u′.
The geometric model of a curved support structure is a network of 
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developable surface strips which are orthogonal to a reference surface 

S. Let us consider such a developable strip D, attached to S along the 

common curve c. If we want to make a model from originally straight 

flat strips, the curve c must map to a straight line in the planar unfolding 

of D. This means that c has to have vanishing geodesic curvature with 

respect to D. At each point of c, the tangent planes of D and S are 

orthogonal. Therefore, c has vanishing normal curvature with respect to 

S; it is a so-called asymptotic curve on S. 

We will also study models from strips whose flat developments are 

circular. In order to achieve a circle of radius r as the image of c in the 

flat development of D, c must have constant geodesic curvature 1∕r 
with respect to D and therefore constant normal curvature 1∕r with 

respect to the reference surface S. 

Let us summarize these important facts: A flat circular strip which is 

subject to bending and no stretching can be attached orthogonally to 

a given surface S only along a curve c of constant normal curvature. In 

particular, a straight strip can only be attached orthogonally along an 

asymptotic curve of S. 

Figure 3: A developable strip attached orthogonally to a surface S along 
c. Its rulings r are generally not parallel to the normal vector n. This 
results in curved intersections of strips.

The developable surface D which is orthogonal to S along c is in general 

not formed by the surface normals along c. The surface D is enveloped 

by planes orthogonal to S and tangent to c, but its straight lines (rulings) 

are in general not orthogonal to S (Fig. 3). As discussed in detail by 

Tang et al. (2016), the ruling vectors are given by r = κgn + τgt and thus 

agree with the surface normal n for τg = 0, which in most of our examp-

les is not the case. Related to this fact is the following one: The strips in-

tersect at a node along a curve n̄ (Fig. 3, middle)  and not in the surface 

normal (Fig. 3, right). However, this curve n̄ is usually nearly straight and 
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The developable surface D which is orthogonal to S along c is in general 

not formed by the surface normals along c. The surface D is enveloped 

by planes orthogonal to S and tangent to c, but its straight lines (rulings) 
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 146 AAG2018  147

for practical purposes may be approximated by a straight line. We will 

also talk about a node angle, which refers to the one measured directly 

at the reference surface S. Theoretically, the angle between the two 

strips differs slightly along n̄.

To have more repetition in parameters, one may want to achieve the 

same node angle for all nodes. To discuss this, we need Euler’s formula 

for the distribution of normal curvatures at a surface point:

Here, κ1, κ2 are the two principal curvatures and  is the angle between 

the fi rst principal curvature and the direction for which we compute 

the normal curvature κn. Directions with the same normal curvature are 

symmetric with respect to the principal directions as they are represen-

ted by  and – . If we want a constant right node angle and work with 

strips of the same radius in the development, the two directions meeting 

at a node are given by  = ± π∕4 and therefore κn = (κ1 + κ2)∕2 = H, 
H denoting mean curvature. This means that such a structure can only 

realize surfaces S for which the mean curvature equals 1∕r. These CMC 

surfaces are very well studied in differential geometry. A special case 

occurs when we use straight strips (r = ∞), where we obtain H = 0 and 

thus minimal surfaces. 

Figure 4: Left: Meusnier’s theorem, relating the curvature of a curve 
c passing through p to normal curvature at p in direction of c′. Right: 
Spherical vertex star.

CMC surfaces are a mathematical representation of infl ated membran-

es, such as soap bubbles or pneus. Their curvature behavior corresponds 

to the equilibrium shape caused by a pressure difference and can form 

both synclastic and anticlastic surface regions. Minimal surfaces are a 

subset of CMC surfaces, in which the pressure difference is zero. They 
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can be found in nature in the form of soap films, creating the minimal 

area within given boundaries. 

We have just derived another important fact: Curved support 

structures from circular strips of the same radius r and with a right 

node angle model surfaces with constant mean curvature H = 1∕r; in 

particular, straight strips yield models of minimal surfaces. The strips 

of the support structure are attached along those curves which bisect 

the principal directions. These bisecting directions are those with extre-

mal geodesic torsion. 

CMC surfaces, and in particular minimal surfaces, are so-called 

isothermic surfaces. They possess a parameterization s(u,v) in which 

the isoparameter lines are principal curvature lines and which describes 

a conformal (angle preserving) mapping from the (u,v)-parameter plane 

to the surface. This parameterization maps the bisecting grid u ± v = 

const. onto those curves along which our strips can be attached. This 

fact is used later in our algorithm. 

If we require a constant, but not necessarily right node angle 2 , 
Euler’s formula shows that the surface S possesses a linear relation 

between its principal curvatures, Aκ1+Bκ2 =1∕r, with A=cos2 , 

B = sin2 . Structures from straight strips (r =∞)lead to surfaces with 

a constant negative ratio of principal curvatures κ1∕κ2 = –B∕A. Those 

have recently been studied by Jimenez et al. (2018).

2.1 Discretization
For digital design of the structures we have in mind, it is very useful to 

have discrete models of the network of curves along which the strips are 

attached. This means that we have to come up with quad meshes whose 

mesh polylines discretize the system of curves of constant normal curva-

ture κn on a smooth surface. 

It is useful to know about Meusnier’s formula and its geometric 

interpretation (Fig. 4). The formula relates curvature κ of a curve c on 

a surface to its normal curvature κn via κn = κ cosΨ, where Ψ is the 

angle between the curve’s osculating plane and the surface normal. 

Geometrically, this means that the osculating circle of c (which has 

radius ρ = 1∕κ) lies on a sphere of radius ρn = 1∕κn , which is tangent to 

the surface. Note that κn only depends on the tangent direction. Hence, 

all curves on a surface which pass through a given point p with a fixed 

tangent possess osculating circles at p which lie on the corresponding 
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Meusnier sphere. This knowledge allows us to prove the following fact: 

A quad mesh of regular combinatorics for which each vertex and 

its four connected neighbors lie on a sphere of constant radius r, 
discretizes a network of curves of constant normal curvature 1∕r on a 

smooth surface. 

For a proof, we consider a vertex vi, j and its four connected neig-

hbors vi–1,j , vi+1,j , vi, j –1, and vi, j+1 (Fig.4). By our assumption, these 5 

points lie on a sphere Si,j of radius r. The three points vi–1,j , vi, j , vi+1,j  are 

consecutive points on a discrete parameter line and lie on a circle, which 

is a discrete version of the osculating circle of that parameter line at vi, j . 

Of course, this circle lies on Si, j . Likewise, the three points vi, j –1, vi, j , 

vi, j +1 define a discrete osculating circle for the other discrete parame-

ter line, which also lies on Si, j . These osculating circles can be seen as 

tangent to an underlying surface and thus we see that the sphere Si, j 

is tangent to that surface and contains the osculating circles. Hence, it 

is the common Meusnier sphere to the two parameter lines through vi, j 

As all these vertex spheres have radius r, we have a discretization of the 

network of curves of constant normal curvature 1∕r.
In order to achieve a right angle in the discrete sense we require 

that the sum of opposite angles around vi, j  is equal (Fig.4, right). This 

discrete orthogonality condition is also used for conical meshes (Liu et 

al. (2006)). If we apply the right angle condition in addition to the sphere 

condition, we obtain a new discretization of CMC surfaces. Only in the 

special case of r = ∞, where the spheres degenerate to planes, do we 

arrive at a known asymptotic discretization of minimal surfaces. 

A careful study of meshes with vertex spheres (not necessarily of 

constant radius) and their special cases is left for future research; it is 

more a topic of discrete differential geometry rather than architectural 

geometry.

2.2 Implementation
A key step is the computation of isothermic networks on CMC surfaces. 

Networks are represented as quad dominant meshes. An isothermic 

mesh M on top of a reference surface S is characterized by (i) edges 

aligned to principal curvature directions of S and (ii) quadrilateral faces 

that are as square as possible. As mentioned above, such networks 

always exist on CMC surfaces. The main difference between two such 

networks on the same CMC surface is the size of the squares.
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Figure 5: From left to right: Principal but not yet isothermic mesh on an 
unduloid surface. Straightening deforms the rectangles of M0 into squ-
ares of M1. Mid-edge subdivision yields a mesh M2 with edge polylines 
aligned to directions of constant normal curvature on the unduloid.

Approach. We start from an initial quad mesh whose edges are aligned 

to principal curvature directions of a reference CMC surface S. If such a 

mesh M0 cannot be created with the help of a known parametrization of 
S, we use T.MAP (Evolute GmbH (2018)) to initialize M0. 

We iteratively deform M0 to an isothermic mesh by letting it slide 

along principal curvature directions of S until all faces are as square as 

possible; we refer to this process as straightening. Note that straigh-

tening does not provide a solution to the difficult problem of singularity 

resolution since it does not change mesh combinatorics. 

The main tool used during straightening is so-called guided projec-

tion as introduced by Tang et al. (2014). Guided projection allows us to 

prescribe a set of constraints in terms of vertex coordinates, face nor-

mals, curvature directions, and other mesh/surface-related quantities. A 

solution to this set of constraints yields an isothermal mesh M1 to which 

we apply mid-edge subdivision in order to obtain a mesh M2 whose ed-

ges are aligned to directions of constant normal curvature on S (Fig. 5). 

If the density of curves is not chosen with care, the resulting isothermic 

mesh may only cover part of S as illustrated in the small inset. In this 

example we added additional horizontal curves and let the straightening 

process distribute them across the surface. As a rule of thumb, it is 

beneficial to have a reference surface S larger than the actual structure 

to give the straightening process enough room.
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We lay out strips orthogonal to S along each polyline of constant normal 

curvature of M2. To this end we use the corresponding normals of the 

reference surface S as initial rulings. Those strips are not yet developa-

ble and are subject to optimization via guided projection. 

Guided projection. In a nutshell, guided projection takes a set of 

simultaneous equations and ‘‘solves’’ them by performing Gauss- 

Newton iterations. The important observation made by Tang et al. (2014) 

is that this simple idea performs especially well if the involved equations 

are, at most, quadratic in the unknowns. We will not go into detail of the 

Gauss-Newton algorithm and refer to Tang et al. (2014). In the remainder 

of this section we will talk about the actual equations that we use. 

Given a polygonal mesh M, its vertex coordinates vi, i = 1,…,n, define 

our main set of variables. All other quantities, such as face normals etc., 

are derived quantities that are tied to vertex coordinates via equations. 

To transform M into a mesh with planar faces fj , j = 1,…,m, we intro-

duce the vertex normals nj  as additional variables and the equations

 where j run over all faces fj  of M and the pair (vi1, vi2 ) runs over all ed-

ges of fj . A mesh that satisfies these equations has planar faces fj  and 

corresponding normal vectors nj . We use these planarity constraints to 

make a quad strip developable. 

Recall that we are not trying to solve a form finding problem: the ver-

tices vi are constrained to move on S. We can implement this restriction 

by introducing equations of the form

where pi is the footpoint of vi on S and mi is the normal of S at pi. This 

is commonly referred to as tangent-distance-minimization and restricts 

the movement of vi to the tangent plane of S at pi. Note that pi and 

mi are not treated as variables – their values are updated between 

Gauss-Newton iterations.
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Figure 6: From left to right: Base mesh aligned to curves of constant 
normal curvature. Initial set of strips, color coded according to deve-
lopability. Post optimized strips after one round of subdivision and 20 
iterations of guided projection.

With the help of the projection operator we can also achieve alignment 

of mesh edges to prescribed directions – in our case directions of prin-

cipal curvature which are precomputed on S. We project the midpoint of 

edge (vi , vj ) onto S to obtain the principal curvature directions d1 and 

d2. The edge (vi , vj ) should be aligned to one of those directions. The 

corresponding alignment equation reads

To obtain a conformal parametrization we use an equation introduced in 

the context of circle packings (Schiftner et al. (2009)). For each vertex vi 

we introduce a scalar variable 𝑙𝑙i > 0 and the equations
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Figure 6: From left to right: Base mesh aligned to curves of constant normal curvature.
Initial set of strips, color coded according to developability. Post optimized strips after one
round of subdivision and 20 iterations of guided projection.

the tangent plane of S at pi. Note that pi and mi are not treated as variables –
their values are updated between Gauss-Newton iterations.

With the help of the projection operator we can also achieve alignment of mesh
edges to prescribed directions – in our case directions of principal curvature which
are precomputed on S. We project the midpoint of edge (vi,v j) onto S to obtain
the principal curvature directions d1 and d2. The edge (vi,v j) should be aligned to
one of those directions. The corresponding alignment equation reads

0 = dT
1 (vi −v j)dT

2 (vi −v j) = (vi −v j)
T d1dT

2 (vi −v j).

To obtain a conformal parametrization we use an equation introduced in the context
of circle packings (Schiftner et al. (2009)). For each vertex vi we introduce a scalar
variable li > 0 and the equations

0 = (vi −v j)
T (vi −v j)− (li + l j)

2

where j runs over all neighbors of vertex vi.

Optimizing discrete structures typically requires a fairing term to ensure overall
mesh quality. When dealing with quadrilateral meshes it is sufficient to require that
a generic vertex vi, j (cf. Figure 4) and its four neighbors satisfy

2vi, j = vi−1, j +vi+1, j

2vi, j = vi, j−1 +vi, j+1.

Finally, we may want to optimize a given mesh towards a mesh with spherical vertex
stars as explained above. For each vertex we introduce a radius ri, sphere center ci,
and equation

0 = (vi − ci)
T (vi − ci)− r2

i .

A neighboring vertex v j has to satisfy 0 = (v j − ci)
T (v j − ci)− r2

i .

2.3 Results

We start with a remark on the color coding of strips in this section. To judge
the developability of a quad strip we measure the planarity of individual quads
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Figure 6: From left to right: Base mesh aligned to curves of constant normal curvature.
Initial set of strips, color coded according to developability. Post optimized strips after one
round of subdivision and 20 iterations of guided projection.
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We lay out strips orthogonal to S along each polyline of constant normal 

curvature of M2. To this end we use the corresponding normals of the 

reference surface S as initial rulings. Those strips are not yet developa-

ble and are subject to optimization via guided projection. 

Guided projection. In a nutshell, guided projection takes a set of 

simultaneous equations and ‘‘solves’’ them by performing Gauss- 

Newton iterations. The important observation made by Tang et al. (2014) 

is that this simple idea performs especially well if the involved equations 

are, at most, quadratic in the unknowns. We will not go into detail of the 

Gauss-Newton algorithm and refer to Tang et al. (2014). In the remainder 

of this section we will talk about the actual equations that we use. 

Given a polygonal mesh M, its vertex coordinates vi, i = 1,…,n, define 

our main set of variables. All other quantities, such as face normals etc., 

are derived quantities that are tied to vertex coordinates via equations. 

To transform M into a mesh with planar faces fj , j = 1,…,m, we intro-

duce the vertex normals nj  as additional variables and the equations

 where j run over all faces fj  of M and the pair (vi1, vi2 ) runs over all ed-

ges of fj . A mesh that satisfies these equations has planar faces fj  and 

corresponding normal vectors nj . We use these planarity constraints to 

make a quad strip developable. 

Recall that we are not trying to solve a form finding problem: the ver-

tices vi are constrained to move on S. We can implement this restriction 

by introducing equations of the form

where pi is the footpoint of vi on S and mi is the normal of S at pi. This 

is commonly referred to as tangent-distance-minimization and restricts 

the movement of vi to the tangent plane of S at pi. Note that pi and 

mi are not treated as variables – their values are updated between 

Gauss-Newton iterations.
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Figure 6: From left to right: Base mesh aligned to curves of constant 
normal curvature. Initial set of strips, color coded according to deve-
lopability. Post optimized strips after one round of subdivision and 20 
iterations of guided projection.

With the help of the projection operator we can also achieve alignment 

of mesh edges to prescribed directions – in our case directions of prin-

cipal curvature which are precomputed on S. We project the midpoint of 

edge (vi , vj ) onto S to obtain the principal curvature directions d1 and 

d2. The edge (vi , vj ) should be aligned to one of those directions. The 

corresponding alignment equation reads

To obtain a conformal parametrization we use an equation introduced in 

the context of circle packings (Schiftner et al. (2009)). For each vertex vi 

we introduce a scalar variable 𝑙𝑙i > 0 and the equations
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Figure 6: From left to right: Base mesh aligned to curves of constant normal curvature.
Initial set of strips, color coded according to developability. Post optimized strips after one
round of subdivision and 20 iterations of guided projection.

the tangent plane of S at pi. Note that pi and mi are not treated as variables –
their values are updated between Gauss-Newton iterations.

With the help of the projection operator we can also achieve alignment of mesh
edges to prescribed directions – in our case directions of principal curvature which
are precomputed on S. We project the midpoint of edge (vi,v j) onto S to obtain
the principal curvature directions d1 and d2. The edge (vi,v j) should be aligned to
one of those directions. The corresponding alignment equation reads

0 = dT
1 (vi −v j)dT

2 (vi −v j) = (vi −v j)
T d1dT

2 (vi −v j).

To obtain a conformal parametrization we use an equation introduced in the context
of circle packings (Schiftner et al. (2009)). For each vertex vi we introduce a scalar
variable li > 0 and the equations

0 = (vi −v j)
T (vi −v j)− (li + l j)

2

where j runs over all neighbors of vertex vi.

Optimizing discrete structures typically requires a fairing term to ensure overall
mesh quality. When dealing with quadrilateral meshes it is sufficient to require that
a generic vertex vi, j (cf. Figure 4) and its four neighbors satisfy

2vi, j = vi−1, j +vi+1, j

2vi, j = vi, j−1 +vi, j+1.

Finally, we may want to optimize a given mesh towards a mesh with spherical vertex
stars as explained above. For each vertex we introduce a radius ri, sphere center ci,
and equation

0 = (vi − ci)
T (vi − ci)− r2

i .

A neighboring vertex v j has to satisfy 0 = (v j − ci)
T (v j − ci)− r2

i .

2.3 Results

We start with a remark on the color coding of strips in this section. To judge
the developability of a quad strip we measure the planarity of individual quads
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Figure 6: From left to right: Base mesh aligned to curves of constant normal curvature.
Initial set of strips, color coded according to developability. Post optimized strips after one
round of subdivision and 20 iterations of guided projection.

the tangent plane of S at pi. Note that pi and mi are not treated as variables –
their values are updated between Gauss-Newton iterations.
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a radius ri , sphere center ci , and equation 

A neighboring vertex vj has to satisfy .

2.3 Results
We start with a remark on the color coding of strips in this section. To 

judge the developability of a quad strip we measure the planarity of in-

dividual quads (v1, v2, v3, v4) as the distance of its diagonals. To factor 

out scaling this number needs to be normalized. To do this we divide by 

the mean length of diagonals and arrive at the following planarity score:

If we imagine a 1×1 m square, a diagonal distance of 1 cm maps to a 

planarity score of about 0.007. When applying color, pure red maps to a 

planarity score of 0.005 or higher. 

Starting from an initial quad mesh M aligned to principal curvature 

directions of a reference surface S, we used the fairness, alignment, and 

conformality constraints while restricting movement to S via the close-

ness term to turn M into an isothermic mesh. The diagonals of M define 

the contact curves along which strips are attached. Strips are optimized 

for developability using the planarity constraint while constraining their 

lower boundary curves to S and their upper boundaries to a parallel 

surface at prescribed distance h. 

Unduloid. The unduloid is obtained as a surface of revolution of an 

elliptic catenary. Figure 6 shows a network of curves with constant nor-

mal curvature, an initial set of strips using surface normals of a triangle 

mesh representation as node axis, and a set of optimized strips.

We use the spherical vertex star property to explore the deformation 

behavior of the curve network. The network of diagonals extracted from 

the isothermic network M1 (Fig. 5) is a very good starting point to com-

pute a discrete structure that satisfies this condition. Figure 7 shows the 

effect of reducing the radius of the red circle shown in the small inset 

while preserving edge lengths and the spherical vertex star condition 
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Figure 8: From left to right and top to bottom: Ocean reference surface, 
isothermic mesh, network of constant normal curvature curves, and the 
initial set of strips following the curve network.

Figure 7: Deformation of the unduloid using the spherical vertex star 
property. The radius of the red curve was reduced by 10, respectively 
20 % to drive the deformation. The bottom row shows a corresponding 
paper model employing a coarser curve network on the upper half of the 
unduloid.



 152 AAG2018  153

a radius ri , sphere center ci , and equation 

A neighboring vertex vj has to satisfy .

2.3 Results
We start with a remark on the color coding of strips in this section. To 

judge the developability of a quad strip we measure the planarity of in-

dividual quads (v1, v2, v3, v4) as the distance of its diagonals. To factor 

out scaling this number needs to be normalized. To do this we divide by 

the mean length of diagonals and arrive at the following planarity score:

If we imagine a 1×1 m square, a diagonal distance of 1 cm maps to a 

planarity score of about 0.007. When applying color, pure red maps to a 

planarity score of 0.005 or higher. 

Starting from an initial quad mesh M aligned to principal curvature 

directions of a reference surface S, we used the fairness, alignment, and 

conformality constraints while restricting movement to S via the close-

ness term to turn M into an isothermic mesh. The diagonals of M define 

the contact curves along which strips are attached. Strips are optimized 

for developability using the planarity constraint while constraining their 

lower boundary curves to S and their upper boundaries to a parallel 

surface at prescribed distance h. 

Unduloid. The unduloid is obtained as a surface of revolution of an 

elliptic catenary. Figure 6 shows a network of curves with constant nor-

mal curvature, an initial set of strips using surface normals of a triangle 

mesh representation as node axis, and a set of optimized strips.

We use the spherical vertex star property to explore the deformation 

behavior of the curve network. The network of diagonals extracted from 

the isothermic network M1 (Fig. 5) is a very good starting point to com-

pute a discrete structure that satisfies this condition. Figure 7 shows the 

effect of reducing the radius of the red circle shown in the small inset 

while preserving edge lengths and the spherical vertex star condition 

 152 AAG2018  153

Figure 8: From left to right and top to bottom: Ocean reference surface, 
isothermic mesh, network of constant normal curvature curves, and the 
initial set of strips following the curve network.

Figure 7: Deformation of the unduloid using the spherical vertex star 
property. The radius of the red curve was reduced by 10, respectively 
20 % to drive the deformation. The bottom row shows a corresponding 
paper model employing a coarser curve network on the upper half of the 
unduloid.



 154 AAG2018  155

with a fi xed radius for all vertex spheres equal to the inverse of mean 

curvature H of the undoloid. The value of H = 1.25 was estimated on a 

triangle mesh representation of the unduloid reference surface. 

Ocean. Reference surface (H = 0.68), isothermic mesh, curve 

network, and initial strips are shown in Figure 8. The set of optimized 

strips is shown in Figure 9. Strip quality deteriorates when approaching 

the boundary. This cannot be fi xed by optimization of strips since rulings 

are determined by geodesic torsion τg and normal curvature κn of the 

guiding curves (which, in our case are uniquely defi ned by S and hence 

cannot be changed individually). As a remedy one needs to explore ne-

arby reference shapes with a more favorable ratio of τg and κg along the 

curve network, or consider twisting lamellas during construction to allow 

deviation from a developable strip. 

Figure 9: Strips (of radius 1.47) after 2 rounds of subdivision, each 
followed by 20 iterations of guided projection. 

3. The Asymptotic Gridshell 
The design and construction of the Asymptotic Gridshell simultaneously 

serve as motivation and case study for this paper. The structure illustra-

tes the transfer from a purely geometrical concept to an architectural 

project, and presents the benefi ts and challenges of designing with 

rigorous geometrical constraints, fabricating and assembling a strained 

lamella grid, and analysing its load-bearing behavior. 
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3.1 Design process 

Surface. The initial surface was designed using a fast digital routine 

for minimal surface approximation. While the algorithm implements 

the geometric requirements of a CMC surface, the designer is respon-

sible for all other requirements like site, safety and functionality. A key 

challenge was to find a shape that would benefit an efficient shell-like 

load-transfer by approximating qualities of a funicular form. Manipulating 

the position and shape of two boundary curves, we created an intricate, 

mussel-shaped design with high double curvature and arch-shaped ed-

ges. Three curved horizontal supports nestle well along the complex site 

boundaries. The surface creates a circular oculus around an existing tree 

and opens two archways that allow circulation throughout the courtyard 

(Fig. 11, left). Once the boundary curves were defined, the minimal sur-

face was modeled more accurately as NURBS surface using the Rhino 

plugin TeDa (Philipp et al. (2016)). 

Figure 10: The Asymptotic Gridshell was completed in October 2017. 
The structure is 5 m high and spans 9 × 12 m. It is built entirely from 
1.5 mm-thick and 100 mm-wide steel lamellas. (Image: Felix Noe) 
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Network and lamellas. The network is designed along the paths 

of constant normal curvature (asymptotic curves) bisecting an isother-

mic principal curvature network (Section 2.2). This produces an almost 

square cell layout which is beneficial both structurally and graphically. 

Furthermore, the diagonal alignment with the principal curvature direc-

tions creates advantages for future facade solutions with single-curved 

or planar quadrilateral panels (Liu et al. (2006)). 

The lamella geometry was simply defined by the normal vectors n 

(Fig. 3, right). This creates a well-defined ruled surface strip with straight 

intersections deviating from a truly developable surface. As a consequ-

ence, the structural strips are twisted during assembly and experience 

elastic strain. 

Figure 11: Left: The Asymptotic Gridshell was designed to fit an existing 
green courtyard. The arch-shaped design fosters the load-bearing be-
havior of a gridshell. Right: Two planar surface points create singularities 
which were iteratively adjusted during the design process to align in one 
principal curvature line. (Image: Felix Noe) 

The geometry of network and lamellas is dependent on the curvature 

of the surface. A high Gaussian curvature causes a high torsion of the 

lamellas which is limited by the elastic capabilities of the material. Planar 

surface points, on the other hand, create singularities within the network, 

and thus have a large impact on the layout and stability of the grid 

structure. Both factors were carefully adjusted by controlling the pro-

gression of boundary curves, re-computing the surface and testing the 

new network layout. In the case of the Asymptotic Gridshell, there are 

two singularities on opposite sides, east and west of the central oculus. 

Both singularities are designed as congruent, regular, hexagonal nodes. 
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They were arranged on the same principal curvature line.

The grid density is determined by the subdivision of this connection 

axis. (Fig. 11, right)

3.2 Construction development 
Implications of curvature. The three curvatures (normal curvature, 

geodesic curvature and geodesic torsion) within the structure are cre-

ated either during fabrication (of circular lamellas) or during assembly 

(through elastic bending and twisting). The t, u and n-vector resemble 

the x, y and z-axis of our lamellas profiles. The stresses due to elastic 

deformation are directly related to the curvature values.

Let us first look at the gridshells of Frei Otto which mark the star-

ting point of our construction development. (Fig. 2, top) Otto’s design 

network is subject to all three curvatures. The timber lattice had to be 

constructed from slender, doubly symmetrical profiles in order to be bent 

and twisted around all axes. Any shape within the permissible bending 

radii can be built from such a grid. 

Our curve networks, on the other hand, follow the paths of constant 

normal curvature. The grid can be constructed from straight or circular 

lamellas orientated perpendicular to the surface. As a consequence, 

no bending around the local y-axis (sideways vector) of the profiles is 

necessary during assembly. The geodesic curvature results in bending 

around the z-axis (normal vector), and the geodesic torsion creates twis-

ting of the lamellas around their x-axis (tangent vector). When choosing 

the profile thickness, the stiffness has to be adjusted to accommodate 

the maximum twist and minimal bending radii and keep deformation 

elastic. 

In contrast to the timber gridshells of Frei Otto, the lamella grid is 

restricted to the family of shapes described in Section 2. This is due to 

the restricted deformation (i.e., high stiffness) in respect to the y-axis 

(i.e., constant normal curvature). 

Post-stiffening strategy. If the elastic deformation of a material is 

used to construct a curved geometry, this inevitably poses the question 

of deflection and stability under self-weight and external loads. Increa-

sing the bending stiffness is not an option if all elements are to be bent 

elastically into a curved geometry. Lienhard calls this discrepancy a “pa-

radoxon that underlies all bending-active structures” (Lienhard (2014), p. 141). 

These opposing requirements are solved by introducing two parallel lay-
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Network and lamellas. The network is designed along the paths 

of constant normal curvature (asymptotic curves) bisecting an isother-

mic principal curvature network (Section 2.2). This produces an almost 

square cell layout which is beneficial both structurally and graphically. 

Furthermore, the diagonal alignment with the principal curvature direc-

tions creates advantages for future facade solutions with single-curved 

or planar quadrilateral panels (Liu et al. (2006)). 

The lamella geometry was simply defined by the normal vectors n 

(Fig. 3, right). This creates a well-defined ruled surface strip with straight 

intersections deviating from a truly developable surface. As a consequ-

ence, the structural strips are twisted during assembly and experience 

elastic strain. 

Figure 11: Left: The Asymptotic Gridshell was designed to fit an existing 
green courtyard. The arch-shaped design fosters the load-bearing be-
havior of a gridshell. Right: Two planar surface points create singularities 
which were iteratively adjusted during the design process to align in one 
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The geometry of network and lamellas is dependent on the curvature 
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two singularities on opposite sides, east and west of the central oculus. 

Both singularities are designed as congruent, regular, hexagonal nodes. 
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They were arranged on the same principal curvature line.
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ers of lamellas. Each layer is sufficiently slender to be bent and twisted 

elastically into its target geometry. Once the final geometry is installed, 

the two layers are coupled with shear blocks in regular intervals to 

increase the overall stiffness. 

This construction technique was tested with two prototypes, one in 

timber and one in steel, each with an approx. 4 × 4 m span (Fig. 12). The 

timber lamellas were bent individually and connected to a rigid edge- 

beam. The lamellas are arranged on two levels to allow for uninterrupted 

timber profiles. The steel prototype, on the other hand, was assembled 

flat (a benefit of straight lamellas) and subsequently transformed into 

the spatial geometry. Here the lamellas are slotted and interlocked at 

one level.

Grid joint. All nodes are congruent with an intersection angle of 90 

degrees. They can thus be constructed with repetitive, orthogonal joints 

(Fig. 13). At each intersection, two pairs of parallel lamellas are interla-

ced through perpendicular slots. The slots are twice as wide as the ma-

terial thickness to allow a rotation of up to 60 degrees during assembly. 

The lamellas are locked by two star-shaped washers on top and bottom. 

Figure 12: The structure was tested with two prototypes, one in timber 
and one in steel, each with an approx. 4 × 4 m span. Left: The lamellas 
of the timber prototype are arranged on separate levels to allow the use 
of uninterrupted profiles. Right: The lamellas of the steel prototype are 
interlocked in one level. They were first assembled flat and then trans-
formed into the curved geometry (bottom row). (Images: Eike Schling) 

 158 AAG2018  159

A single carriage bolt and nut is used to fix each joint after they are 

transformed into the target geometry. An additional cross-shaped clamp 

fixes the diagonal cables. The Asymptotic Gridshell was constructed 

from 100 mm high and 1.5 mm thick, straight, stainless steel lamellas at 

parallel offset of 25 mm following the detailing and construction strategy 

of the steel prototype. 

3.3 Construction process 

Fabrication. Designing networks along constant normal curvature lines 

greatly simplifies fabrication: All lamellas are fabricated flat as either 

straight strips (on minimal surfaces) or circular strips (on any CMC-sur-

face). The edge lengths from node to node, are the only variable 

information needed to produce fabrication drawings. The distances are 

simply marked along the standardized strips. 

The lamellas of the Asymptotic Gridshell were laser-cut straight, 

which allowed for minimal offcuts and easy transport. The fabrication of 

washers and clamps was incorporated in the same laser-cutting proce-

dure offering a cost-efficient production of all parts. 

Erection process. The lamellas are slotted together to form a flat 

(for minimal surfaces) or spherical (for general CMC surfaces) girder 

(Fig. 14). In this state, the lamellas display no geodesic torsion. The 

intersection angles are not yet constant. The joints are flexible and allow 

for a scissor movement. This lamella grillage can be deformed within a 

predefined family of shapes, one of which is the designed reference sur-

face. It is found by enforcing a constant node angle of 90 degrees. The 

Figure 13: The typical grid joint is assembled with two parallel lamellas in 
each direction. Two standardized star-shaped washers fix the 90 degree 
intersection angle and create a central axis for the carriage bolt. The steel 
cables are also constructed in pairs and are fixed by a cross-shaped 
clamp. (Images: Felix Noe) 
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deformation behavior follows the same principles as described in Sec-

tion 2.3 (Fig. 7). This kinetic behavior is called a compliant mechanism 

(Howell (2002)). It enables an elastic erection process without formwork. 

Of course, this mechanism is subject to gravity and other external loads 

and needs to be verified by selective measurements. Its further study is 

part of future research. 

The Asymptotic Gridshell was prefabricated in nine individual seg-

ments (Fig. 15). Each grillage was first assembled flat, then placed on a 

simple, cross-shaped stand and elastically deformed into its designated 

anticlastic curvature. Locking each node at 90 degrees and adding edge 

supports created rigid segments, which were then combined on site, 

like a large 3D puzzle. By fixing the supports and adding diagonal steel 

cables, this structure becomes an efficient, load-bearing gridshell. 

Figure 14: The straight lamellas are interlocked by hand into flat  
segments. The segments are then transformed elastically into their 
designed shape by fixing each node to 90 degrees. Nine of these  
segments were prefabricated off site. (Images: Eike Schling) 

Figure 15: Installation on site. The prefabricated segments of up to 
400 kg, where positioned with a crane, temporarily supported, and bolted 
together by hand. To activate the structural behavior of a gridshell, the 
completed grid is braced diagonally and fixed at supports in vertical and 
horizontal direction. (Images: Andrea Schmidt) 
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3.4 The completed pavilion

The Asymptotic Gridshell is the first architectural structure that utilizes 

the geometric potentials of a constant normal curvature network on a 

constant mean curvature surface (Fig. 16). The gridshell spans 9 × 12 m 

and covers an area of approx. 90 m2. Its surface weight is approximately 

18 kg/m2, a total of 1.6 tons. A decisive factor for the aesthetical quality of 

both the shape and the lamella grid are owed to their formation process, 

following the curvature constraints of this design method. The slender 

lamellas create a gradient graphical effect with virtually full transparency at a 

straight view, and an almost opaque appearance at an inclined view (Fig. 1).

3.5 Load-bearing behavior
FEM analysis. The network geometry was modeled in Rhino/Grasshop-

per and exported as a discrete model to RFEM (Dlubal Software GmbH 

(2018)), where all necessary structural information was added. The geo-

metric values of geodesic curvature and geodesic torsion were measu-

red individually for each discrete element along the smooth curves and 

translated into strain loads in RFEM. This strategy enabled us to induce 

the residual stresses without modeling the actual assembly process 

(Fig. 16). Due to intense twisting of the lamellas, additional normal stres-

ses according to the effects of helix torsion are to be expected (Lumpe 

and Gensichen (2014) p. 118–128). These effects are not considered in 

the FE analysis which uses beam elements. 

Figure 16: The load-bearing structure of the Asymptotic Gridshell. The 
lamellas are bent and twisted to form an anticlastic network with two 
singularities. The diagonal bracing is arranged at every second node. The 
diagram shows the surface stresses of the lamella grid resulting from 
both the elastic erection process and self-weight. All stresses stay within 
the elastic range.
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Global and local behavior. We observed the hybrid load-bearing be-

havior of two competing mechanisms; a grillage and a gridshell. Due to 

the bending stiffness in their strong axis, the lamellas are able to act as 

a beam grillage. This is needed to account for the local planarity of the 

asymptotic curves (due to their vanishing normal curvature) and to stabi-

lize the open edges. At the same time, the lamellas form a doubly-curved 

structure. Bracing this quadrilateral network with diagonal cables and 

creating fixed supports (in vertical and horizontal direction) activates 

behavior of a gridshell. Which of the two mechanism dominates is highly 

dependent on the design shape. 

The arch-shaped boundaries of the Asymptotic Gridshell promote a 

shell-like behavior. Expanding the design spectrum to all CMC surfaces 

enables us to create synclastic shapes and further adapt to a funicular 

form. dependent on the design shape. The arch-shaped boundaries of 

the Asymptotic Gridshell promote a shell-like behavior. Expanding the 

design spectrum to all CMC surfaces enables us to create synclastic

shapes and further adapt to a funicular form.

The elastic erection process results in restraint (residual) stresses 

within the lamellas. Due to the low profile thickness, the initial ben-

ding moments stay low and have minor effects on the global behavior. 

However, compression of these curved elements increases the bending 

moment in their weak axis. The strategy of doubling and coupling lamel-

las is therefore essential to control local buckling. 

The optimal orientations for compression and tension elements of 

a gridshell run along the principal stress trajectories. However, in our 

method, we choose to follow a geometrically optimized orientation along 

the directions of constant normal curvature, taking into account an 

increase of stresses. 

4. Conclusion 

Combining repetitive curvature parameters with an elastic construction 

holds great potentials for the fabrication, assembly and load-bearing 

behaviour of strained gridshells. 

The technical requirements (straight or circular lamellas, congruent 

nodes) translate nicely into differential geometric characterizations of 

the curve networks and reference surfaces realizable with this approach. 
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They even motivated the development of novel discrete structures (quad 

meshes with spherical vertex stars) which deserve interest from a purely 

geometric perspective. 

The geometric properties greatly simplify the construction process: 

The lamellas have a beneficial orientation orthogonal to the design sur-

face. They can be fabricated flat and straight or with a constant radius. 

All joints are identical and orthogonal. The elastic erection process takes 

advantage of a compliant mechanism, determining the design shape 

without formwork. 

The elastic behavior, however, poses the challenge to avoid deflec-

tions and instability under self-weight and external loads. This paradox-

on of bending-active structures was addressed within the design and 

construction process. Even though our structures can only assume CMC 

surfaces, a substantial freedom in the design process remains with the 

potential to adjust to architectural and structural requirements. 

Future Research. Meshes with spherical vertex stars are a novel 

surface discretization which opens up new avenues of research in 

discrete differential geometry. Our study also opens up two promising 

research fields that combine the disciplines of mathematics, architecture 

and engineering: (i) the investigation of the kinetic behaviour of elastic 

grids (compliant mechanisms) and the dependency of geometry and 

mechanics therein, (ii) the optimization of surfaces for both geometric 

requirements (like constant mean curvature) and structural performance 

(for shell structures). 

Finally, we aim to develop further construction techniques and facade 

solutions for strained gridshells built from straight and circular lamellas. 
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Abstract 
Constant mean curvature surfaces (CMCs) have many interesting  

properties for use as a form for doubly curved structural envelopes.  

The discretization of these surfaces has been a focus of research 

amongst the discrete differential geometry community. Many of the 

proposed discretizations have remarkable properties for envelope ratio-

nalization purposes. However, little attention has been paid to generation 

methods intended for designers. 

This paper proposes an extension to CMCs of the method de-

veloped by Bobenko, Hoffmann and Springborn (2006) to generate 

minimal S-isothermic nets. The method takes as input a CMC (smooth 

or finely triangulated), remeshes its Gauss map with quadrangular faces, 

and rebuilds a CMC mesh via a parallel transformation. The resulting 

mesh is S-CMC, a geometric structure discovered by Hoffmann 

(2010). This type of mesh have planar quads and offset properties, 

which are of particular interest in the fabrication of gridshells.
 

Figure 1: A steel-glass gridshell with geometry based on an  
S-CMC trinoid.
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1. Introduction

1.1 Constant mean curvature surfaces for architecture 

CMCs are defined mathematically as surfaces whose mean curvature 

is constant. The mean curvature of a surface at a given point is the 

average of the maximum and the minimum principal curvatures. Some 

CMCs can be easily created: any soap film or bubble in static equilibrium 

takes the shape of a CMC. However, the family of CMCs also contains 

surfaces that could theoretically take the form of a bubble, but that are 

too unstable to exist. CMCs have other unique properties, including the 

fact that they solve the Plateau problem: CMCs are the surfaces with 

minimal area fitting a given boundary and englobing a given volume. 

CMCs are particularly interesting for the design of building envelo-

pes for the following reasons:

 » They can be fitted on any boundary. This property is interesting for 
applications such as covering courtyards.

 » They are aesthetically pleasing, as they take the harmonious shape 
of an inflated soap bubble.

 » Rogers and Schief (2003) showed that under normal pressure, princi-
pal stress directions in CMC membranes are aligned with directions 
of curvature. Curvature directions are preferred directions to lay 
beams in a gridshell: they minimize panel curvature and node torsion, 
and also have offset properties. Therefore, on CMCs, curvature lines 
combine mechanical performance with fabrication advantages.

Minimal surfaces are the most well-known CMCs. They are a special 

subclass of CMC surfaces for which the mean curvature is null. They 

can be easily generated with a physical model (e.g. a soap film), or a 

numerical model (the input then being a boundary curve). However, be-

cause of their null mean curvature and due to the estimate of curvature 

for a stable minimal disk (Schoen 1983), they tend to be flat at their cen-

ter. They thus require a boundary with a high variation of height in order 

to be interesting aesthetically, mechanically, and functionally. Allowing 

the mean curvature to be different from zero significantly broadens the 

spectrum of possible shapes: minimal surfaces can be ‘‘inflated’’ – as 

can be seen in Figure 2.
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Figure 2: Comparison of minimal surfaces (left) and non-minimal CMCs 
(middle and right) with the same boundary. Pictures generated with 
Kangaroo2. 

In architecture, CMCs have been used frequently in the work of Frei 

Otto. The most famous example is the Munich Olympic stadium, whose 

cable net describe a minimal surface. Other examples include membrane 

 envelopes and inflatable structures, such as the Unite Pneu or the 

Airhall of Expo64. Despite the interest for smooth CMCs, the potential of 

discrete CMCs for building envelopes has not yet been exploited.

1.2 Related work 
We will first briefly review previous work on the physical form exploration 

of CMCs. We will then review literature on discrete CMC surfaces rele-

vant for the current paper. Amongst this literature, two approaches are of 

interest for this study: methods enabling generation of a CMC meshes 

on a given boundary, and one discretization of the notion of CMC, called 

S-CMC, which offers interesting properties for gridshell fabrication. 

Form potential of CMCs

The shape of a soap film in static equilibrium is a CMC surface. This is 

due to the fact that a soap film has no bending stiffness and its mem-

brane tension is uniform and isotropic. The mean curvature of a film is 

directly proportional to the difference of pressure between the two sides 

of the film. 

Bach, Burkhard and Otto (1988) performed a vast exploration 

program of the shape potential of soap films at the IL in Stuttgart. They 

tested several types of film support: frames, ropes, friction-free surfa-

ces, and even other soap films. Each type of support has a different 

flow of forces and yield different forms. They also explored the effect of 
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difference of pressure between the two sides of a fi lm. Their work revea-

led the ability of CMCs to fi t boundaries with holes and thus assume 

complex topologies. Trying to fi t the same boundaries with traditional 

methods such as NURBS surfaces would be highly tedious. Inspired by 

their work, Figure 3 shows a soap bubble whose boundary is a model of 

the British Museum atrium.
 

Figure 3: A soap bubble on a boundary similar to the one of the atrium 
of the British Museum.

Generation of triangular CMC mesh by searching critical points of 

a functional

Many methods have been developed to generate a triangular mesh 

with minimal area under a volume constraint. One well-known software 

implementing such a method is Surface Evolver, developed by Brakke 

(1992). Oberknappl and Polhier (1999) generate minimal surfaces in S3 

by minimizing an area functional. They then transform them into CMCs 

in R3 using the Lawson correspondence, which has been recently 

generalized in the discrete case by Bobenko and Romon (2017). In order 

to improve the robustness of CMC mesh generation, Pan et al (2012) 

propose to look for critical points of an energy based on a Centroidal 

Voronoi Tessellation rather than minimizing the area. For designers, one 

of the most accessible tools to generate CMCs is the plugin Kangaroo2 

for Grasshopper, which is based on the algorithm developed by Bouaziz 

et al (2012) to handle various geometric constraints. 

 170 AAG2018  171

S-CMC meshes

Smooth CMCs have the property of being parametrized along curvature 

lines by isothermic coordinates. Bobenko and Hoffmann (2016) propose 

a discretization of this property with S-isothermic meshes. A subclass 

of this family (referred to as type 1), have the particularity of having an 

inscribed circle in each face, and sphere associated with each summit 

– two spheres being tangent if the corresponding nodes share an edge. 

Bobenko, Hoffmann and Springborn (2006) developed a theory of mi-

nimal S-isothermic meshes based on this structure. Numerous discrete 

minimal surfaces were then constructed by Bücking (2007). 

Hertrich-Jeromin and Pedit (1996) show that smooth CMCs are 

characterized by the fact that their Christoffel dual is also a Darboux 

transform of the surface. Hoffmann (2010) proposes a discretization of 

this property for S-isothermic meshes of type 1. Meshes fulfilling this 

property are called S-CMCs. 

S-CMC surfaces have geometric properties which are of particular 

interest for fabrication purposes. Firstly, they are quad meshes with 

planar faces and torsion-free nodes. This property significantly eases 

the fabrication of a structure such as a gridshell. Secondly, they admit an 

offset in which some edges are located at constant distance h1 from the 

mesh, and the other edges are located at a distance h2. This property 

enables a perfect alignment of the beams at the node while using only 

two different beam cross sections, as illustrated in Figure 4. We will use 

the term orthotropic edge offsets to refer to this kind of offset. Thirdly, 

each face has an inscribed circle. As a result, faces are “roughly square”, 

which provides aesthetic value to the mesh, and also minimizes material 

loss if panels are cut out of a larger sheet. Finally, S-CMC meshes have 

interesting mechanical properties. They are close to a smooth CMC, 

which is funicular under a uniform pressure loading. Furthermore, since 

the mesh approximates the curvature lines of the smooth CMC, the 

orientation of the edges is optimized for beams to resist such a load 

(Rogers and Schief, 2003).
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Figure 4: A torsion free node in an orthotropic edge offset mesh.

1.3 Contribution and overview

In this paper, we propose a method to generate quadrangular S-CMC 

meshes and a structure that allows a change of curvature sign. In 

Section 2, we present an overview of the method. Section 3 describes 

how smooth or finely triangulated CMCs can be generated. Section 4 

explains how the Gauss map of the smooth CMC can be discretized. 

The construction of a discrete S-CMC surface from this Gauss map is 

detailed in Section 5. In Section 6, we explain how the work presented in 

Sections 3 and 4 must be modified in areas with a change of curvature 

sign. Finally, in Section 7, we give some examples of S-CMC surfaces 

and discuss the use of the method in practice.

2. Overview of the method

The workflow is similar to the one used by Bobenko, Hoffmann and 

Springborn (2006) to generate minimal meshes. The process consists of 

four steps, which are shown in Figure 5.

In the first step, a CMC surface – smooth or triangulated – is ge-

nerated. An isothermic network of curvature lines is generated. In the 

second step, the Gauss map of the surface is calculated. The boundary 
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of the Gauss map and the topology of the curvature lines are used to 

generate a discrete Gauss map in the third step. Finally, in the fourth 

step, the Gauss map is transformed into an S-CMC mesh by a parallel 

transformation.

3. Generation of input smooth CMCs

In this section, we shall present how we generate smooth CMC surfaces 

for use as an input in our algorithm. 

CMC generation

For the fi rst step of our process, smooth or fi nely triangulated CMCs 

are generated. The former option is used when an analytical equations 

is known for the surface. An example is the unduloid, shown in Figure 

5. When no analytical equation is available, a CMC triangular mesh 

is generated by using the functions “SoapFilm” and “Volume” of the 

software Kangaroo2. CMC surfaces shown in Figure 2 are generated by 

this method.

Figure 5: Overview of the discretization method.
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Isothermic orthogonal net

An isothermic network of curvature lines is then drawn on the surface. 

The isothermic property means that each face is “square”, this is ne-

cessary for the net to be approximated by an S-CMC mesh. This part is 

performed in the CAD software Rhino. For smooth surfaces, a code was 

developed for this purpose using the geometry functions of RhinoScript-

Syntax. For triangulated surfaces obtained by Kangaroo2, a network of 

curvature lines is drawn using the software EvoluteTools T.MAP. Singula-

rities of the network shall be located on the umbilical points of the surfa-

ce. The order of these umbilical points is a multiple of ½ (Gutierrez and 

Sotomayor 1986), so the singularities have an even valence: singularities 

of valence 3, 5 and 7 are not possible since they correspond to umbilics 

of order ¼, -¼, and -¾ respectively. There are exceptions of course if a 

singularity is located on the mesh boundary. 

Gauss map

The Gauss map of the surface is then computed. For analytical surfaces, 

the exact normal is computed. For triangulated surfaces, the direction of 

the normal at a given vertex is computed as the gradient of the area of 

the adjacent faces.

4. Discretization of the Gauss map

The discretization of the Gauss map is done by generating an orthogonal 

double circle packing (ODCP) on the unit sphere with a boundary close 

to the one of the smooth Gauss map. The geometric structure of ODCP 

is explained in Section 4.1 and the generation method in Section 4.2. The 

transformation of the ODCP into a discrete Gauss map is described in 

Section 4.3. The rich structure of this discrete CMC Gauss map – which 

allows generation by an ODCP – was developed by Hoffmann (2010).

4.1 Orthogonal double circle packings
An orthogonal double-circle packing (ODCP) in the plane consists of 

pairs of circles, where two circles of a given pair are concentric. Such a 

structure is shown in Figure 6. The packing can be decomposed into two 

families, represented by red and blue. Having in mind the construction 

of the Gauss map, one family will be called the node-centered circles (in 
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red), and the other one the inscribed circles (in blue). For each family, 

the smaller circles are tangent in one direction, and the larger circles in 

the other one. 

When a pair of circles from each family intersect, they fulfill the 

following rule: the smaller circle of one pair intersects orthogonally the 

larger circle of the other pair. This property is shown in Figure 7. Thanks 

to this rule, a quad mesh can be drawn between the node-centered 

circles, and the inscribed circles (in blue) are then tangent to the edges 

of this mesh.

 

Figure 6: Orthogonal double-circle packing (ODCP).

In order to generate the Gauss map, ODCP will be generated on S², the 

unit sphere. The rules described above are applied in the same way as in 

the plane, except that straight lines are replaced by arcs of great circles.

4.2 Generation of an ODCP
In this section, we show how an ODCP can be generated with given 

combinatorics and boundary angles. In a first step, radii of circles 

compatible with the ODCP structure and the boundary conditions are 

found using a Newton algorithm. The compatibility of the circles can be 

expressed by two sets of constraints. In a second step, the ODCP is 

constructed using the radii and the orthogonal properties. 
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An orthogonal double-circle packing (ODCP) in the plane consists of 

pairs of circles, where two circles of a given pair are concentric. Such a 

structure is shown in Figure 6. The packing can be decomposed into two 

families, represented by red and blue. Having in mind the construction 

of the Gauss map, one family will be called the node-centered circles (in 
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red), and the other one the inscribed circles (in blue). For each family, 

the smaller circles are tangent in one direction, and the larger circles in 

the other one. 

When a pair of circles from each family intersect, they fulfill the 

following rule: the smaller circle of one pair intersects orthogonally the 

larger circle of the other pair. This property is shown in Figure 7. Thanks 

to this rule, a quad mesh can be drawn between the node-centered 

circles, and the inscribed circles (in blue) are then tangent to the edges 

of this mesh.

 

Figure 6: Orthogonal double-circle packing (ODCP).

In order to generate the Gauss map, ODCP will be generated on S², the 

unit sphere. The rules described above are applied in the same way as in 

the plane, except that straight lines are replaced by arcs of great circles.

4.2 Generation of an ODCP
In this section, we show how an ODCP can be generated with given 

combinatorics and boundary angles. In a first step, radii of circles 

compatible with the ODCP structure and the boundary conditions are 

found using a Newton algorithm. The compatibility of the circles can be 

expressed by two sets of constraints. In a second step, the ODCP is 

constructed using the radii and the orthogonal properties. 
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First Constraint on radii: orthogonal intersection 

The orthogonality condition between two secant pairs of circles yields 

one constraint per pair of circles. As shown in Figure 7, let r0 and R0 be 

the spherical radii of one pair of circles, and r1 and R1 the radii of the 

second one. The geodesic distance d between the centers of the two 

pairs can be calculated by the spherical cosine rule:

 

Assuming that all circles have a radius lower than π ⁄ 2 , and thus a non-

null cosine, we obtain the following relation:

 

Since this relation must hold for all intersecting pairs of circles, the cosi-

ne ratio must be identical for all pairs of circles:

 

  (1)

The constant t will play an important role in the structure of the offset, as 

will be shown in Section 4.3.
 

Figure 7: Two secant pairs of circle of an ODCP.

Second constraint on radii: closure of mesh faces

The second set of constraints concerns how all the neighboring circles 

of a given circle close around it.
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Bobenko et al (2006) showed that the Napier formula for a right spherical 

triangle can be expressed as follows:

 

in which  and r1, r2 and  are shown in Figure 8 :

 

Figure 8: Napier rule for a right spherical triangle.

Since circles intersect orthogonally, the Napier formula can be used to 

compute all the angles centered at a point M, as shown in Figure 9:

 

Where 

 

For a pair of circles not located on the boundary, the angles must add up 

to 2π: 

  (2a)
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For pairs located on the boundary, the sum of the angles around a point 

is a boundary angle Φ that needs to be calculated from the smooth 

Gauss map, as shown in Figure 9: 

  (2b)

Calculation of the radii

The system of nonlinear equations determined in the two previous 

sub-sections is square: the number of equations is the same as the 

number of unknowns. Since the equations are analytical, the Jacobian 

matrix of the system can be calculated exactly. Radii fulfilling all the 

constraints are searched using the Newton-Raphson method. Note that 

the value of the radii need to be higher than 0 and lower than π. This 

constraint is automatically fulfilled using the logarithmic radii as variab-

les. The following initial spherical radii were used for the pictures shown 

in this paper: 0.24 rad for the larger circles of each pair, and 0.15 rad 

for the smaller. This algorithm converges fairly quickly. Eight iterations 

are sufficient to generate the trinoid shown in Figure 1. 

Construction of the ODCP

These two sets of constraints are sufficient for radii to be compatible 

with a simply connected ODCP structure. The ODCP is built from the 

circles as follow:

Figure 9: Angles around the center of a circle (left) and boundary  
angles Φ (right).
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 » First, pairs of circles are placed on two edges of the boundaries 
of the packing. Only the circle radii and the boundary angles are 
needed for this purpose.

 » The remaining circles are added by propagation from the edges 
using the orthogonality property and the radii.

4.3 Construction of the discrete Gauss map

The construction of the Gauss map starts with the construction of the 

circular cones which are tangent to S² along the larger node-centered 

circles of the ODCP. Such cones are shown on the right side of Figure 10.

Prop 1

The apexes of these cones are the vertices of a polyhedral mesh with pl-

anar faces and orthotropic edge offset property, i.e. each edge is tangent 

to either S² or tS² (a sphere or radius t concentric with S²).
 

Figure 10: Construction of the Gauss map from the ODCP. Cones used 
to build the mesh are shown on the right.

 

Proof:

Starting from an object X of the ODCP, we will call X1 (resp. X2) the next 

object in the direction of higher (resp. lower) curvature – i.e. the direction 

in which the larger (resp. smaller) circles are tangent. 
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Let us call (see Figure 10):

 » P the center of a node-centered circle of the ODCP ( P ∈ S² ) ;

 » Q the cone apex corresponding to P ;

 » O the center of S² ;

 » C and c the node-centered circles centered at P, whose spherical 
radii are respectively R and r (spherical radii are angles in S², see 
Figure 11);

 » Ci and ci the inscribed circles of the spherical face PP1P12P2.

Q, Q1 and A are aligned, because the cones centered on P and P1 are 

tangent to S² at A, and A belongs to the plane OPP1. Since (QQ1) and 

ci are incident (at A) and since (QQ1) is tangent to S² at A, (QQ1) and ci 

are necessarily coplanar. The same argument can be used to show that 

(Q2Q12) and ci are coplanar. Therefore the quad QQ1Q12Q2 is planar.

Let us now build the circle c’, which is the projection of c onto tS², 

and then build the cones tangent to tS² along c’. Q’, the apex of this 

cone belongs to (OP), and its distance to O is (see Figure 11), using 

Equation (1):

 

Therefore Q’ = Q, and we conclude that (QQ2) and (Q1Q12) are tangent 

to tS².

5. Reconstruction of the surface from the 
Gauss map
In this section, we will show how to construct an S-CMC surface from 

the Gauss map built in Section 4. We start by constructing a double- 

sphere packing thanks to the underlying ODCP. To each node-centered 

pair of circles, we associate a pair of spheres centered on the node of 

the Gauss mesh. Figure 12 shows on the left (resp. right) a section of 

the double-sphere-packing along the edge of the mesh where the larger 

(resp. smaller) spheres touch each other:
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The radii of the larger and the small spheres are given respectively by:

 

Prop 2

Let G be a Gauss map constructed in Section 4. Let R and r be the radii 

of the associated double sphere packing. There exist two S-isothermic 

meshes, M+ and M-, which are edgewise parallel to G. The radii of the 

associated spheres are (R+r) ⁄ 2 for M+, and (R–r) ⁄ 2 for M-.

Figure 12: Double-sphere packing associated with the Gauss map.

Figure 11: Tangency of edges with tS².
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Proof:

Figure 13 shows a top view of a face of the Gauss map, with the associ-

ated double-spheres. Since the face is closed, we have:

In which  and 

As shown in Figure 13, we can obtain a second sphere packing by swit-

ching the direction of tangency of the smaller spheres with that of the 

larger spheres. This switch can be executed by applying a reflection to 

each colored quad.

Thanks to the fact that each colored quad has two right angles, the 

flipped Gauss mesh is parallel to the original one. Therefore, we obtain 

the following equations, which corresponds to the closure of the quad 

As a result, spheres of radius (R+r) ⁄ 2 can be packed in directions 

parallel to the Gauss mesh:

 

Figure 13: Change of the direction of the packing of double spheres.
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This compatibility equation insures that the whole Gauss map can be 

deformed into an S-isothermic mesh by a Combescure transformation. 

The edge length modification ratios of this transformation are simply 

obtained from the sphere radii.

The same result holds for a packing of spheres of radii (R-r)/2. 

Prop 3

The S-isothermic meshes M+ and M- mentioned in Prop 2 are also 

S-CMC.

Proof:

Note: For sake of conciseness many of the mathematical concepts used 

in this proof (such as the Christoffel dual) are not introduced. The reader 

is advised to browse the paper by Hoffmann (2010) beforehand.

S-CMC meshes are defined as S-isothermic meshes for which the 

Christoffel dual mesh is also a Darboux transform of the mesh. We 

start by constructing the mesh M* = M+ + n where n is the Gauss map 

and “+” is the sum on vertices. We call Ci the vertices of M+, Ci
* those of 

M*, and Ai the points of tangency of the spheres of M+. 
 

Figure 14: Construction of the Christoffel dual. From left to right: 3D 
view of meshes, 3D view of Gauss map (larger spheres centered on 
n2 and n12 are hidden for clarity), section in higher curvature direction, 
section in lower curvature direction.

Figure 14 shows the construction in the planes (CC1C
*) and (CC2C*). 

In each of these planes, we draw a line perpendicular to (CCi) going 

through Ai. We call Bi the intersection of this line with (C*Ci
*). Since ed-

ges of the Gauss map n are tangent to S² and tS², A1B1 = 1 and A2B2= t. 
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We note that:

 

 

Therefore, we can construct a packing of tangent spheres of radii 

centered on vertices of M*. Since M* is parallel to M+, it is  

also parallel to M-. As a result, M* corresponds to the mesh M-.

The product of the radii of corresponding spheres of M+ and M* is:

  (3)

where we use the fact that:

 

Therefore M* is the Christoffel dual of M+.

The circles inscribed in the quads CC1C12C2 et C*C1
*C12

*C2
* are coaxial. 

The sphere containing these two circles is orthogonal with the eight 

spheres centered on each vertex. Therefore, M* is a Darboux transform 

of M+. We can then conclude that M+ is S-CMC.

6. Change of curvature

The junctions between zones of positive and negative curvature require 

a specific treatment. At such a location, the Gauss map of the surface 

is ‘‘folded’’. This section describes how the discrete Gauss map can be 

folded while keeping the geometric properties described in the previous 

sections.

6.1 Structure of the Gauss map on a fold
In the model presented in this paper, the curvature is defined on the 

nodes of the mesh: if a node has a positive (resp. negative) curvature, 

the associated sphere in the S-CMC mesh has a radius of (R+r)/2 

(resp. (R-r)/2). In the cases treated in the previous sections, each face 

had four nodes with the same curvature sign. As a result, all the circles 
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of the ODCP (and consequently all the spheres of the sphere packing) 

were tangent on the outside. When a change of curvature occurs, two 

adjacent smaller circles touch each other on the inside, as shown in 

Figure 15 :
 

Figure 15: Change of curvature sign in a line of double-circles of an 
ODCP of a Gauss mesh.

Quads of the Gauss map with nodes of different curvature signs can be 

classified in the following types, as represented in Figure 16:

 » Faces of type A: two nodes have positive curvature, and the two oth-
ers have negative curvature. The change of curvature occurs when 
traveling in the direction of low curvature (the direction in which 
smaller circles are tangent).

 » Faces of type B: same as type A, except that the change of curva-
ture occurs when traveling in the direction of higher curvature (the 
direction in which larger circles are tangent). In that particular case, 
the inside tangency shown in Figure 15 does not apply. 

 » Faces of type C: this type is only encountered in highly coarse mes-
hes and will not be treated here.

 » Faces of type D: one node has a curvature sign different from the 
other three.

 

Figure 16: Types of quads with non-uniform node curvature signs.
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The full tangency pattern for each type of face is shown in Figure 17. For 

faces of type A and D, it can be noted that, depending on relative size of 

the adjacent circles, the quad can auto-intersect. Faces of type B always 

auto-intersect, in the way of a candy wrapping paper. For faces A and D, 

the tangency of quad edges with tS² happens outside of the quad. The 

types of fold of a quad are analogous to how a rectangle of fabric can 

be folded, as shown in Figure 18.

 

Figure 17: Tangency of circles for the five types of face with a change 
of curvature sign (larger node centered circles not shown for clarity).
 

Figure 18: An illustration of the five types of fold with a piece of fabric.
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6.2 Reconstruction of the surface

Prop 4

Each of the five proposed Gauss map folds can yield a transition part 

between synclastic and anticlastic portions of a mesh that conserves the 

S-CMC property.

Proof:

For sake of conciseness, we will only prove the result for faces of type 

A1. Looking at one face QQ1Q12Q2 on Figure 19, we notice that we can 

pack spheres of radius (Ri+ri)/2 at Q and Q1 and (Ri-ri)/2 at Q2 and Q12 

to form a quad with an inscribed circle:

 

Figure 19: Construction of faces with inscribed circle from a Gauss face 
of type A1 (circle radii are indicated in grey with an arrow).

Note that the same result can be achieved with spheres of radii (Ri-ri)/2 

at Q and Q1 and (Ri+ri)/2 at  Q2 and Q12 :
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If we look at a strip of quads (i.e. a mesh with only one row) of type A1, 

we can now obtain a strip of S-isothermic mesh Str+. Vertices can be 

assigned a sphere or radius (Ri+ri )/2 on side of the strip and (Ri-ri )/2 

on the other side.

If we now look at Str* = Str+ + n, the same reasoning as in the proof of 

prop 3 shows that Str* is the dual and a Darboux transform of Str+. There-

fore, Str+ is S-CMC. It can thus connect an S-CMC mesh with spheres of 

radii (R+r)/2 (synclastic) to an S-CMC mesh with radii (R-r)/2 (anticlastic). 

Figure 20 shows the connection of the face A1 with adjacent faces. 

Figure 20: Arrangement of spheres at a face of type A1. Left: The face 
and its dual form a Darboux pair; Middle: Corresponding Gauss map in 
3D and in side view including adjacent faces; Right: Side view of M and M*.

It can be noted that equations (2a) and (2b) need to be modified on 

the fold of the Gauss map: the angles ψk shall be counted negatively at 

locations shown on Figure 17. The type of quad is thus a necessary input 

of the algorithm. The convergence is much less robust when there is a 

change of curvature.

7. Applications and discussion

Examples

The unduloid is a periodic cylindrical CMC. Although a discrete S-CMC 

unduloid can be generated rather simply by a so-called elliptic billiard, 

as explained in Hoffmann (2010), the unduloid shown in Figure 5 was 

generated with our framework, using as input the analytical equations of 

the smooth unduloid.
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Figure 1 shows an S-CMC version of the trinoid, another well-known 

CMC surface. Singularities, such as the valence-6 node at the center, 

can be efficiently handled by the method. The constant t for this mesh is 

1.004. Therefore, the edge offset in the higher curvature direction is only 

0.4 % lower than in the lower curvature direction. This fact is particularly 

interesting considering one major limitation of the edge offset meshes: 

at locations of a surface where there is a significant difference between 

the higher and the lower principal curvature, faces are highly elongated. 

This effect can be observed in some of the work of Pottman et al (2007). 

In the case of this trinoid, we observe that by allowing a slight change 

between the edge offsets in the two curvature directions, we can obtain 

faces with an aspect ratio close to one. Furthermore, the difference 

between the two offsets is low enough to be considered as a regular 

edge offset for fabrication purposes. Finally, it is important to note that 

this S-CMC mesh can fulfill the properties (planarity, offset, etc.) with 

arbitrary precision.

Figure 21 shows an S-CMC mesh with changing curvature sign. The 

associated sphere packing is shown on the right. The mesh is generated 

from a portion of 4-noid, and successive reflections yield the full mesh. 

The eight-valent nodes could be replaced by planar octagons for impro-

ved uniformity of panel sizes.

 

Figure 21: An S-CMC mesh with changing curvature sign.

Figure 22 shows multiple morphologies that can be obtained with a 

given trinoid combinatorics. The boundaries of the meshes are planar, 

this simplifies the fabrication of the edge beams. The various shapes are 
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If we look at a strip of quads (i.e. a mesh with only one row) of type A1, 
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Figure 20: Arrangement of spheres at a face of type A1. Left: The face 
and its dual form a Darboux pair; Middle: Corresponding Gauss map in 
3D and in side view including adjacent faces; Right: Side view of M and M*.
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the smooth unduloid.
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Figure 22: Several S-CMC trinoids. Left: combining three and two 
trinoids; Right: different ways to inflate a trinoid.

Limitations

The following limitations apply:

 » As with other types of meshes with torsion-free nodes, S-CMC 
meshes can be interpreted as a curvature line network. As such, one 
cannot choose the orientation of the mesh.

 » The final geometry is highly dependent on the combinatorics of the 
curvature line network. The isothermic condition and the positioning 
of singularities on umbilics can be difficult to obtain with commer-
cially available software. Furthermore, the network (and therefore 
the S-CMC mesh) might need significant refinement when some 
umbilics are located close to each other. 

 » In the meshes shown in this paper, boundaries are planar curvature 
lines. For other types of boundaries, the computation of the boundary 
angles often requires an optimization loop to approximate the desired 
smooth surface. This aspect is under development and will be detailed 
in further publications.

 » CMC surfaces that are not simply connected (e.g. surfaces with 
holes) need periodicity constraints on the top of the ones given in 
Section 4.2 to ensure proper closing.
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Comparison with other generation methods

As a final remark, S-CMCs could also be generated by optimizing di-

rectly a mesh. Both vertex positions and vertex normals would then need 

to be optimized simultaneously. This would make the optimization quite 

more complex than for circular and conical meshes, for which vertex 

positions are the only variables. An advantage of such a method would 

be a stronger control of the boundary, allowed by the ability to “relax” 

the S-CMC property. Comparatively, our method uses less degrees of 

freedom, fulfills the S-CMC property exactly and fit boundaries in an 

approximate manner. 

8. Conclusion
In this paper, we identified the potential of S-CMC meshes for construc-

tion-aware design of free-form architectural envelopes. We proposed 

a method to generate these meshes by discretizing smooth CMCs. We 

developed a geometric structure that allows the construction of S-CMCs 

with changing curvature sign. Finally, we demonstrated the morphological 

potential of S-CMCs on several examples
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Abstract 
Performance-responsive buildings are establishing a sustainable 

architectural future. The proliferation of urban spatial density has led to 

a series of environmental problems including pedestrian thermal stress 

and air pollution. To deal with these problems, architects are suggested 

to understand and employ the natural ventilation. This paper introduces 

the latest achievements of environmental-performance architectural 

morphology generation method based on the customized physical wind 

tunnels visualization, which integrated the dynamic mechanical models. 

Moreover, “twisting” and “retreat” architectural morphologies are cho-

sen as the movement mode of the mechanical models to conduct some 

experiments. A set of systematic method of building morphology gene-

ration is presented, which is suitable for the early stage of architectural 

design and guided by wind environment performance.

1. Introduction

With the advent of the digital era, sustainable and environmental design 

concept has become the important factor of considering built environ-

ment performance. The building morphology is changed by novel design 

method and construction technology. Andrew Marsh has combined 

Generative Design and Performative Design, while the building’s perfor-

mance based design steps to the digital age (Marsh 2008). Integration 

of Digital simulation and morphology generation asks architects to pay 

attention to the design logic, as performance responsive environment 

based architectural generation design will promote the development of 

sustainable buildings.

The dramatic increase in urban spatial density has brought increa-

singly number of serious problems in terms of building ventilation, air 

pollution, and pedestrian comfort. To deal with these problems, architects 

can apply natural ventilation as the main consideration factor in the early 

stage of building morphology design. With the continuous development 

of performance-based simulation tools, the “trial and error” design 

method has gradually been replaced by logically generated design 

method. At present, the simulation of the wind environment is mainly 

through computational fluid dynamics (CFD) software and physical wind 

tunnel. However, the former has the disadvantages of large computatio-
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nal burden, long time-consuming and high-level barriers to expertise, as 

well as the high cost of the latter, and the difficulty of establishing initial 

models, which both may not provide timely feedback for the optimization 

of the scheme in the early stages of design. The post-evaluation para-

digm no longer satisfies the architect’s pursuit of performance-based 

design for the built environment (Lin et al.2018).

This study is based on the customized physical wind tunnel, dynamic 

models will be applied in the research of optimized morphology gene-

ration system. Therefore, with the application of Arduino open source 

platform, the connection between virtual and real-world contributes 

to efficient wind environmental performance building design. Indeed, 

simulated environment information and dynamic building models create 

a feedback loop together.

2. Morphology design strategy

The plane form of high-rise buildings has a great influence on the 

outdoor microclimate and pedestrian thermal comfort. The wind-driven 

plane form design methods are usually divided into three categories: 

fillet, chamfering, and indentation; while to reduce the wind load on the 

top volume of building, the changes in facade form are mainly divided 

into two types: top reduction and corner cutting. On the other hand, 

twisting and retreat are also applied for morphology optimization. The 

last two strategies do not change in volume, but rather the relative plane 

orientation and position.

Moreover, U.S. High-rise Buildings and Urban Housing Committee 

(CTBUH) revealed that there have been currently 28 twisted tall towers, 

which were either built or under construction (CTBUH 2016). These twi-

sted buildings are generating a new landmark building tendency respec-

tively, that is, to pursue more freedom in the vertical dimension. These 

representative buildings include the Shanghai Tower, Cayan Tower in 

Dubai and Absolute World Towers in Canada. However, its specific form 

may mainly consider aesthetics and structural engineering, their twisting 

angle and mode might not take environmental performance into account. 

The outdoor wind environment around tall building with the retreat 

design strategy is closely related to the windward angle of the stair-like 

facade. The Seoul Comprehensive Trade Center in South Korea adopted 
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a single-sided step-back approach, which weakened the impact of the 

subsidence on the pedestrians, while reduced the feeling of depression 

caused by the large number of buildings (Xie and Yang 2013).

In this paper, twisted form and retreat form have been selected as 

main mode of motion applied in the dynamic models. This morphology 

generation method that is beneficial to architects, according to wind en-

vironmental performance during the early stages of architectural design. 

Based on the principle of dynamic form-finding, this method transforms 

the relationship between complex architecture and wind environments 

into computer language and a programmable, adjustable model. It 

prompts the design to focus on the relationship between the building 

and the surrounding wind environment, and is not limited to the building 

form itself.

3. Experiment platform

3.1 Customized physical wind tunnel 

In order to obtain rapid simulation feedback on the air flow around the 

building, a customized mini-wind tunnel was generated in 2016 (Yuan et 

al. 2016). This 3 meters length wind tunnel was made by wood planks 

and organic glass panels. Due to the open source nature of the wind 

tunnel module, any module can be rebuilt or additional functional mo-

dules can be added according to different experimental requirements. 

According to the order of air flow, it was divided into: stable section, con-

traction section, experimental section, diffusion section and fan section. 

In 2017, a smoke section was installed according to visualization demand 

(Zheng et al. 2016). The module is located upstream of the experimental 

section and is connected to the contraction section. It can generate fine 

smoke particles. The wind field simulated by the experimental section 

is seen by the naked eye and provides real-time observation air flow. In 

order to avoid the influence of the sensor on the fluid, the experimental 

section of the wind tunnel was modified in this study. The baseboard of 

the test section was composed of a detachable composite wood and 

multiple sensor’s position was reserved opening according to the expe-

rimental requirements for pedestrian height wind environment measu-

rement. The single opening must meet the pass of the sensor’s hot wire 
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probe, and the size is set to 3 mm × 20 mm. The side of the opening is 

sealed with a sealed brush to maintain the airtightness of the experi-

mental space. The number and location of openings must be tailored to 

specific experimental needs. The transformed wind tunnel is shown in 

Figure 1. 

Figure 1: Customized physical wind tunnel.

3.2 Sensing system
The experiment chooses Rev. P as the main sensor, which can sense 

the wind speed and temperature in the environment in real time and 

transmit the electrical signal of the data to the Arduino board and 

convert it through the matching formula. The more accurate wind speed 

and temperature values can be obtained, which is more continuous than 

the wind speed value converted from pressure (Moya 2015). There are 

fixing holes on both sides of the top of the sensor electronic compo-

nent. The insulated wire with a certain hardness can be used to clamp 

in the wind tunnel experimental section. The lower part of the sensor is 

located outside the wind tunnel, and the circuit and signal receiver can 

be connected (Fig. 2).
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Figure 2: Wind sensor fixed on the baseboard of wind tunnel.

3.3 Arduino platform
A performance-optimized architectural design process often requires a 

feedback-capable control system that can integrated sensors and actua-

tors into physical materials. Therefore, this study selected Arduino, a low-

cost open-source electronic prototype platform for data transmission 
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control (Fig. 3). It includes an I/O board and C language based develop-

ment environment (IDE) for software. Usually, simple programming in the 

IDE is programmed into the micro controller's circuit board to control the 

operation of sensors, servos and other components connected to the 

hardware.

At the same time, in order to make it easier for architects to control 

morphology generation algorithms, this study uses the Firefly plug-in in 

Grasshopper, which compensates for the disadvantages of Grasshopper. 

Although Grasshopper has a graphical programming environment inter-

face, it is difficult to communicate with hardware devices. Firefly has  

replaced the Arduino IDE as a control terminal for programming and 

logic generation. On the one hand, the sensor data connected to the 

Arduino board can be obtained, and on the other hand, the designer 

is allowed to send control information from the Grasshopper to the 

hardware device to stimulate actuators (such as servos) in the real world 

(Payne and Johnson 2013). 

Before the sensor operates, upload the matching code on the Ardui-

no board. The Arduino serial port can display the wind speed in real time. 

When multiple sensors work together, the original code can be modified. 

This process cannot be completed in Grasshopper through Firefly. There-

fore, programming in the Arduino IDE and customizing the number of 

sensors can better suit different experimental requirements.

Figure 3: The workflow based on Arduino Platform.
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4. Dynamic mechanical building model
The dynamic model design needs to consider issues such as wind 

penetration and mass integrity. Therefore, the architectural model of this 

study selected organic glass plates to be formed by stacking and using 

elastic threads to penetrate each layer of organic glass plates for inte-

gral connection. The superposition of materials provides the possibility of 

changing the relative position of each layer, while the elastic thread has 

well ductility and toughness, and can be connected inside the building 

model; at the same time, the elastic thread is pulled by applying horizon-

tal mechanical force. Each layer of material is displaced so as to obtain 

a change of building morphology, and the change has a tightening force 

throughout the elastic thread, which can maintain the airtightness of the 

building model. 

In order to convert the direction and motion trajectory of the horizon-

tal force of the main model, the main principle of the mechanical drive 

design of the main model in this study is to apply the servo as the active 

part. The direction and speed, etc., are converted into the expected 

pattern of body changes. The number of steering gears plays a role in 

increasing the diversity of movement throughout the structure, resulting 

in more abundant physical changes. The mechanical structure of the two 

dynamic models is shown in Figure 4.

Figure 4: Twisting (up) and Retreating (down) building model.
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4.1 Twisting mode based mechanical model

The “twist” building morphology changing strategy is to make the mate-

rials of each layer of the main building model rotate in the horizontal di-

rection at different speeds with the center as the axis. The experimental 

model consists of a laser-cut 4 mm plexiglass sheet, which has a max-

imum frame size of 65 × 65 × 200 mm and uses a 65 × 65 mm rectangle 

as the standard layer prototype for a total of 50 layers. Among them, 

three plexiglass plates connect the steering gear as the active rotating 

plate, and the rest of the volume plates drive their changes through four 

elastic wires running through the inside. On the one hand, the elastic 

wire can provide a horizontal force for rotation of the driven rotating 

plate and is moderate in tension relative to a latex film, etc., and does not 

affect the rotation of the steering gear. Meanwhile, each passive rotating 

plate can be pulled for rotation. On the other hand, the elastic wire can 

be rotated. The continuity on the driven plate body can be maintained: 

the relative angle between adjacent driven plates is the angular difference 

between the two nearest active rotating plates in the vertical direction 

divided by the number of driven plates. As shown in Figure 5, the three 

active rotating plates of the main building model part are respectively 

controlled by three different servos. The steering gear drives the three 

rotating shafts that are nested together to rotate through the gear trans-

mission. Each of the three rotating shafts consists of a hollow ABS tube, 

which respectively transmits the rotation of the corresponding steering 

gear to the corresponding active rotating plate.
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Figure 5: Explosive view of twisting dynamic model.
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4.2 Retreat mode based mechanical model

The strategy of retreating is to make the material of each layer of the 

main model move at different distances. The volume of the main model 

is mainly composed of seven boxes with a height of 26 mm. The top 

layer is the active displacement layer and is moved by the force of the 

metal shaft driving translation. The bottom layer of the main model is 

fixed with the bottom plate, and each layer is connected by four elastic 

wires. The displacement of the top layer can drive the rest of the driven 

layers to be displaced. The elastic wire mainly plays the role of driving 

the driven layer to perform displacement in the model. As shown in 

Figure 6, the rotation of the steering gear 5 drives the gear meshing 

with the linear rack to convert the rotation into translational motion. The 

displacement distance is related to the angle of rotation of the steering 

gear and the number of gears. In this experiment, the steering gear is 

rotated by 45 degrees per tooth equals to 10mm movement. Due to the 

complexity of the site environment, the unidirectional translation of the 

evacuation body lacks the diversification of the experimental objects. 

Therefore, an overall rotation device is added to the mechanical structu-

re of the evacuation model, and the wind environment can be applied to 

different degrees of translation of the body in different directions. The 

gear connected by the steering gear 4 drives the entire building body 

model to rotate, and at the same time includes the rotational movement 

of the steering gear 5 and the translational sliding block. As a result, the 

physical parameters of the retreating model mainly consist of the model 

displacement distance represented by the degree of rotation of the 

steering.gear 5 and the overall rotation angle of the steering gear 4.

 204 AAG2018  205

Figure 6: Explosive view of retreat dynamic model.



 204 AAG2018  205

4.2 Retreat mode based mechanical model

The strategy of retreating is to make the material of each layer of the 

main model move at different distances. The volume of the main model 

is mainly composed of seven boxes with a height of 26 mm. The top 

layer is the active displacement layer and is moved by the force of the 

metal shaft driving translation. The bottom layer of the main model is 

fixed with the bottom plate, and each layer is connected by four elastic 

wires. The displacement of the top layer can drive the rest of the driven 

layers to be displaced. The elastic wire mainly plays the role of driving 

the driven layer to perform displacement in the model. As shown in 

Figure 6, the rotation of the steering gear 5 drives the gear meshing 

with the linear rack to convert the rotation into translational motion. The 

displacement distance is related to the angle of rotation of the steering 

gear and the number of gears. In this experiment, the steering gear is 

rotated by 45 degrees per tooth equals to 10mm movement. Due to the 

complexity of the site environment, the unidirectional translation of the 

evacuation body lacks the diversification of the experimental objects. 

Therefore, an overall rotation device is added to the mechanical structu-

re of the evacuation model, and the wind environment can be applied to 

different degrees of translation of the body in different directions. The 

gear connected by the steering gear 4 drives the entire building body 

model to rotate, and at the same time includes the rotational movement 

of the steering gear 5 and the translational sliding block. As a result, the 

physical parameters of the retreating model mainly consist of the model 

displacement distance represented by the degree of rotation of the 

steering.gear 5 and the overall rotation angle of the steering gear 4.

 204 AAG2018  205

Figure 6: Explosive view of retreat dynamic model.



 206 AAG2018  207

5. Morphology generation approach and 
workflow
The flow of the generative design driven by the environmental perfor-

mance is composed of three elements: performance simulation data, 

morphology change rules and evaluation criteria. Architectural morp-

hology design is no longer just the feeling of space and the pursuit of 

aesthetics. Mass, components and their changes are described by para-

meters in the design process and are constrained by the digital environ-

ment elements. The final morphology of the building is generated in the 

evaluation standard with environmental data screening and control.

In Galapagos' architectural vocabulary logic using “genetic algorithm”, 

the change of “independent variables” promoted the generation of diver-

sification of digital forms, and thus prompted the generation of “depen-

dent variables” according to the set “logical correlation”, and “dependent 

variables”. The evaluation determines the optimal solution of the building. 

The physics logic of this study (Fig.7) is similar to that of Galapagos, but 

the control subject of the “independent variables” is transformed from 

the virtual electronic model into the mechanical model of the servo drive; 

the simulation tools involved in “logical correlation” are changed from 

computational fluid dynamics (CFD) software to physics. Wind tunnel 

experiment, through the digital measurement system to obtain “de-

pendent variables”. After the establishment relationship of the data, a 

certain “evaluation standard” can be used to screen the “dependent vari-

able” and the building morphology under the control of the optimal “inde-

pendent variable” can be obtained. 

5.1 Logic programming for servo movement
The “independent variables” in the logic of morphology change consist 

of servo movement data. First, set the time interval of the steering gear 

rotation and the step angle in the Grasshopper, that is, the mechanical 

angle rotated by the rotor for a pulse signal without a reduction gear. At 

the beginning of the form-finding experiment, a series of servo position 

parameters are obtained as time increments. The parameters of the 

servos generated at the same time are combined into an “argument” 

parameter group. These parameter sets correspond to different physics 

models. Each pattern will obtain a series of wind speed values during 

wind tunnel simulation. The wind speed values are read into Grasshop-

per through the Arduino platform and Firefly. The pre-processed effecti-
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Figure 7: The workflow of architectural generation method combining 
physical wind tunnel and dynamic model.

Figure 8: Grasshopper diagram of steering gear data controlling of  
retreating (up) and twisting (down) dynamic model.
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ve and stable wind speed is again converted into a form of a parameter 

that can be evaluated as a “dependent variable”, and the computer is 

guided through a certain evaluation criteria to screen it (Fig. 8).

5.2 Data collecting of the wind tunnel experiment
After the parameter logic is set up, in the physical wind tunnel, the site 

model will be installed, initial wind speed settings and sensor location 

should also be determined. The position of the sensor can be determi-

ned based on the pseudo-color map obtained by CFD software simula-

tion, and the representative points are selected. During the experiment, 

Grasshopper will record servo parameters corresponding to all morpho-

logy and data from sensors around these models (Fig. 9). When all data 

are collected to the expected value, Grasshopper will process and filter 

the data through the preset evaluation criteria, and finally show the three 

groups of optimal physical parameters. 

Figure 9: Sensor data processing.

5.3 Evaluation rules translation

In this experiment, three criteria commonly used in wind environment 

evaluation were selected to assess the effective data generated in the 

experiment: the deviation of comfortable temperature, the probability of 

uncomfortable wind speed and the discrete value of wind speed at the 

measurement point. Among them, the comfort of the wind environment 

takes the comfortable wind speed of 1 m/s at the height of pedestrians 

in Shanghai at a summer temperature (around 27 ). The evaluation 

is based on the minimum wind speed value and comfort wind speed 
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deviation value as the optimal solution; the uncomfortable critical wind 

speed value is set to 3.9 m/s according to the pedestrian height and the 

street wind speed and frequency evaluation standard, and the pedestri-

an is standing. The probability of occurrence of the critical wind speed 

value is less than 80 % as the comfort range, while the generation of 

the minimum frequency larger than the critical wind speed value is the 

best; the evaluation of the wind speed dispersion value is to prevent the 

wind speed mutation from adversely affecting pedestrians. The higher 

the wind speed, the greater the sudden change in wind speed and the 

harsher wind environment. 

5.4 Comparison and screening out the optimal  
morphology

After inputting the valid data measured by the sensor, the three evalu-

ation criteria all take the minimum value of the battery output as the 

optimal option. After the effective data collected by the experiment is 

converted by the evaluation logic, weights are assigned to the data  

under different evaluation criteria. The weighting factor can be set 

according to different functional requirements around the main building. 

The processed data is added and sorted, among which the smallest 

three data are the optimal solution environmental data group. As shown 

in Figure 10, the operator inputs all effective wind speed values of 10 

sensors from the leftmost end, and calculates and estimates the comfor-

table wind speed deviation data of a single body sample, the probability 

of uncomfortable wind speed values generated by the morphology body 

and the discreteness of wind speed, respectively. The right side can 

output the body number that produces these three optimal environment 

data. Finally, according to the body number, the corresponding main 

building morphology for the next qualitative test can be found.

Figure 10: Comprehensive assessment of environmental data.
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6. Experiment results
This study describes the design method through a series of form-fi nding 

experiments. This paper adopts “twisting” and “retreating” mode to carry 

out dynamic form fi nding experiments in rectangular standard plane 

shapes with the same site environment. Based on the same change rule, 

the weights of the environmental data evaluation in the warping strategy 

experiment are: 70 % for comfort, 15 % for wind speed dispersion, and 

15 % for uncomfortable wind speed; There is a stagnation area with a 

low wind speed. Therefore, in order to ensure the homogeneity of the 

airfl ow around the body, the evaluation weights for the regression model 

in this experiment are: 60 % for the comfort deviation, 30 % for the wind 

speed dispersion, and uncomfortable wind speed, while the probability is 

Figure 11: Servos and corresponding morphology results.
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10 %. The three optimal solutions produced by each body under quanti-

tative evaluation will be analyzed by qualitative smoke experiments, and 

the form of the wind fi eld will be judged again so as to obtain better 

physical results, as shown in Figure 11. And the other building models 

with different morphology design strategies in the smoke visualization 

can be seen in Figure 12 and Figure 13.

Figure 12: Morphology generation results. 
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Figure 13: Dynamic models with wind tunnel visualization.

7. Summary and future work

This study introduced a new design method, built the feedback logic 

between physical wind tunnel and the architects common software 

Grasshopper. A generated feedback dynamic model of the Arduino con-

nected sensors and actuators, making the simulation data in the wind 

tunnel effi ciently applied. This logical system can be easily controlled by 

digital software, thus constructing a set of environmental performance 

design methods suitable for architects in the early design stages. This 

method provides a set of implementable logic fl ow frameworks. Based 

on user-defi ned site environment and evaluation criteria, the overall 

building morphology can be digital controlled. The wind environment 

simulation is involved in the design process at the early stage of design. 

On the one hand, it can not only create better natural ventilation condi-

tions for the microclimate around the building and improve the comfort 

of the users in the site; on the other hand, the performance control of 
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the building form at the beginning of the design can avoid the loss of 

economy and resources brought by the optimization and adjustment 

stage in the later stage of design.

The experiments that can be performed using this design method are 

not limited to this. Under this open design framework, designers can change 

the physical strategy, site environment, sensor locations, and data evaluation 

rules according to specific experimental objectives. In addition, sensors such 

as wind pressure, air temperature and humidity can be installed in the wind 

tunnel to evaluate the comprehensive built environment.

References 

cTbuh, council on TAll buildinGs And urbAn hAbiTAT. 2016. “Tall Buildings in Numbers  

Twisting Tall Buildings.” CTBUH Journal, 3, 46–47.

lin, y. q., zhenG, J. y., yAo, J. W. And yuAn, f.: 2018, Research on Physical Wind Tunnel and 

Dynamic Model based Building Morphology Generation Method, Proceedings of CAADRIA 2018.

moyA, r.: Empirical evaluation of three wind analysis tools for concept design of an urban wind 

shelter[J]. Proceedings of Computer-Aided Architectural Design Research in Asia CAADRIA, 2015: 

313–322.

pAyne, A. o., Johnson, J. K. firefly: Interactive Prototypes for Architectural Design [J].  

Architectural Design, 2013, 83(2): 144–7.

xie, z. y. And yAnG, n.:2013, Optimization Design Tactics for High-rise Building Shape on  

Improvement of Outdoor Wind Environment, Journal of Architecture, 2013(2):76–81.

yuAn, f., huAnG, s. y. And xiAo, T.: 2016, Physical and numerical simulation as a generative design 

tool, Proceedings of CAADRIA 2016, 353–362.

zhenG, J. y., yAo, J. W. And yuAn, f.: 2017, Architectural generation approach with wind tunnel and 

simulation: Environmental Performance-driven design approach for morphology analysis in the early 

design stage, Proceedings of CAADRIA Short Papers 2017, 13–18.



 212 AAG2018  213

Figure 13: Dynamic models with wind tunnel visualization.
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stage in the later stage of design.

The experiments that can be performed using this design method are 

not limited to this. Under this open design framework, designers can change 

the physical strategy, site environment, sensor locations, and data evaluation 

rules according to specific experimental objectives. In addition, sensors such 

as wind pressure, air temperature and humidity can be installed in the wind 

tunnel to evaluate the comprehensive built environment.
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Abstract 
The aim of this paper is to discuss the form-finding of an innovative 

structural system through the design and construction of a full-scale 

timber pavilion. Nexorades, or multi-reciprocal grids, are structures 

where members support each other along their spans. This structural 

principle allows simple assembly and connection details, but leads in 

counterpart to poor structural performance. Introducing planar plates 

as bracing components solves this issue, but result in a complex and 

intricate geometry of the envelope and supporting structure. This paper 

discusses the different challenges for the designers of shell-nexorade 

hybrids and algorithmic framework to efficiently handle them in a pro-

ject workflow.

Figure 1: The central fan of the pavilion.
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1. Introduction 
Nexorades, also known as reciprocal frames or multi-reciprocal grids, 

are structures constituted of short members which supports on their 

ends. They are simple to assemble because of they avoid the construc-

tion of complex connection details and can be built with short members. 

For that matter, they have been used since medieval architecture, for 

example by Villard de Honnecourt, or in sketches of Leonardo da Vinci 

in the Codex Atlanticus (Bowie 1960). Recent examples of nexorades 

include the “Plate Pavilion” in Malta, the “KREOD Pavilion”, designed by 

architect Chun Qing Li, engineers Ramboll and geometry consultants 

Evolute, and timber nexorades in ETH Zürich (Kohlhammer, et al. 2017). 

Despite their ease of assembly, the structural behavior of nexorade 

is far from optimal, because of the low valence, which implies a ben-

ding-dominated behavior, even for funicular shapes (Brocato 2011). This 

has been observed in the material science community, where this pro-

perty of nexorades is used to create auxetic materials. In structural eng-

ineering, this behaviour limits the range of spans where those structure 

are economical and efficient. The structural behavior of nexorades can 

however be improved by bracing them with planar quadrilateral panels. 

The authors call “shell-nexorade hybrids” the new resulting structural 

system. 

The handling of both facet planarity and of the geometry of nexora-

des at the same time is unexplored up to now, and requires tailor-made 

geometrical algorithm for construction-aware structural form finding. 

This paper discusses thus a dialectic approach between constructive 

geometry and structural mechanics and its application to the form-fin-

ding and construction of a timber pavilion, shown in Figure 1.

2. Structural and fabrication  
requirements
In engineering practice, optimization or rationalization have multiple 

competing objectives and constraints. When aiming at high slenderness, 

structural detailing and envelope detailing merge, so that the fabrication 

process and structural design process intertwine. The design of the 

pavilion is driven by the structural and fabrication constraints, which are 

described in this section.
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2.1 Project description

The project aims at illustrating the potential of shell-nexorade hybrids 

as an effi cient and easy-to assemble structural system. First, we have to 

introduce some vocabulary specifi c to nexorades. Nexorades are con-

stituted of load-bearing members, which support each other along their 

span and not their extremities. The generation of their geometry is based 

on the displacement of edges of a watertight mesh. The displacements 

create engagement windows, shown in thick blue lines in Figure 2. Two 

values characterize the engagement windows: their lengths, called enga-

gement lengths, and the eccentricity, which is the distance between the 

neutral axis of two concurrent members.

Figure 2: The reference geometry (left), a nexorade resulting from a 
transformation of the mesh with engagement windows in blue (middle), 
a close-up on a fan: the engagement length is the length of a blue line, 
while the eccentricity is the distance between the lines, highlighted in 
orange (right).

The pavilion is constructed with cross-laminated timber beams and 

10mm thick plywood panels. The pavilion has a span of approximately 7 

meters and covers an area of 50 m². Its shape is inspired by the CNIT, 

a thin shell supported on three punctual supports: the geometry and 

pattern topology allow to build by cantilevering from a central tripod. 

The beams weigh approximately 5 kilograms and can be assembled 

in-situ by two people. Mechanical attachment, as opposed to chemical 

attachments, are used to guarantee on-site assembly. With a thickness 

of 14 cm, the slenderness ratio is of 50, a rather high value for timber 

structures.

2.2 Fabrication and construction requirements
Fabrication constraints are induced by the robotic fabrication process, 

the materiality of timber and by structural considerations. The panels co-

vering the structure must be as planar as possible, in order to guarantee 
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their fabrication from plywood and to avoid coupling between bending 

and axial forces, as they are used as a bracing system. 

The detailing chosen for the connection of beams and panels is 

shown in Figure 3: beams are connected with end-grain screws, while 

beam/panel attachment is made by screws. Tenons and mortises are 

milled in the beams for the assembly process. Grooves are milled in the 

timber beams as alignment failsafe between panels and beams. The top 

surface of the beams are milled in order to avoid timber exposure crea-

ted by the eccentricities. The higher the eccentricity, the less material af-

ter milling, and the lower the lever arm and resistance of the connection. 

The detailing implies thus to minimize the eccentricities, a rather unusual 

optimization target in nexorades.

Figure 3: A fan during construction showing the detailing: beams are 
connected by end-grain screws which create a moment-rigid connection, 
grooves are made in the beam to fi t planar panels, and ruled surfaces 
are milled on top and bottom of the members to avoid timber exposure.
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The beams are fabricated with the aid of 6 axes robots shown in Figure 

4: one robot on a track with a gripper that is used as a mobile frame 

for the beam and the other to perform the milling operations. Since the 

milling of the beam is performed with 13 (6 + 6 + 1) axes, the complexity 

of the attachment between beams and panels can be treated with the 

milling of the beam. The plates are thus cut with simple 2.5 axes CNC 

machines. Their width of 1030 mm sets constraints on the bounding box 

of the panels. Other geometrical constraints are imposed by the robotic 

fabrication process: the size of the gripper imposes a minimal length 

of 750 mm between two mortises, while vibrations restricted the beam 

length to 2 000 mm. The speed of cut was adjusted to avoid vibration 

and to minimize cutting forces. Angles between members also had to be 

minimized in order to ease the approach of the robotic arms.
 

Figure 4: Top view of the robotic cell with gripping robot on track, milling 
robot (bottom) and fixed tools (top).

2.3 Structural requirements

The structure presented in this paper is a temporary building with a 

lifespan of one year. As such, it has to withstand climatic and acciden-
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tal loads. The envisioned accidental load is a non-symmetrical load of 

700 kg (approximately 10 people climbing on the structure). The loads 

and design capacity of beams have been derived from the Eurocode 1 

and 5 respectively. The connection details, which use end-grain screws, 

are not designed within Eurocode, and a European Technical Approval 

(European Technical Approval ETA-11/0190) must be used. The service- 

ability and ultimate strength requirements are defined as follows:

  (1)

Where L is the span (6.5 m),  is the maximal deflection under SLS 

load combination, f is a convex function defined by the technical agre-

ement of the screws describing the utilization of the connection details. 

Buckling was also checked, but, due to the relatively small span, it is not 

the governing phenomenon. The ULS design is conservative because 

not a single nodal failure is allowed. 

The final structure weighs approximately 15 kg/m², so that self-

weight is far from being the governing load case for a temporary  

building, where creep can be neglected. Therefore, the geometry does 

not have to follow a funicular shape, and CAD tools can be used to 

generate a structural shape. Real-time feedback from a finite element 

analysis is therefore necessary to optimize the structural behaviour 

(Bletzinger, Kimmich et Ramm 1991). The reference geometry was thus 

generated as a collection of NURBS.

2.4 Computational workflow
The fabrication and structural requirements are integrated in a com-

putational workflow is presented in Figure 5. The workflow is based on 

several optimization algorithms that solve construction problems and 

allow to iterate on the different design parameters to improve the perfor-

mance of the design. We focus here on the geometrical aspects of the 

computational workflow, treating the robotic setup as a design constra-

int. In reality, iterations between the design and the organization of the 

fabrication platform have been made to guarantee the constructability 

of the pavilion. It is very likely that an industrial with different machines 

would have another set of design constraints.

Two levels of geometrical complexity are handled through the design. 

In early design stages, the architect and engineer deal at a coarse level, 
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called “design geometry” in the fl owchart: the members and plates are 

represented by lines and surfaces respectively, and a priori cross-section 

are used. This allows to discard bad designs and to quickly iterate and 

“optimize” the design, although some modelling assumptions are up to 

the knowledge of the designer. Then, the designer needs to work at a 

fi ner level of detail and thus to generate the “fabrication geometry”. At 

this stage, beams are generated as BREP, the proper cross-sections are 

assigned according to the as-built geometry. The feasibility of the fabri-

cation is also assessed, in our case with the aid of HAL (Schwartz 2012). 

This step is much more resource demanding, as a considerable amount 

of fabrication data has to be generated.

The main geometrical operations performed for the form fi nding of 

the pavilion aim at complying with the main fabrication constraints. First, 

the designer sets an input geometry, it is then fi tted by a mesh with 

planar facets. This mesh is then transformed with a custom algorithm, so 

as to create a nexorade with planar panels. The different fabrication data 

can then be generated and the structural response is evaluated. The 

next section discusses in detail these design steps.
 

Figure 5: Computational workfl ow.
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3. Construction-aware form finding

3.1 Form finding of nexorades with the translation method

The form-finding of shell-nexorade hybrid is based on translations of 

the members, as initially proposed by Baverel (Baverel 2000) and as 

illustrated in Figure 6. The method takes a mesh as input, the edges 

correspond either to the neutral axis of the member or the member 

apex. The geometrical object resulting from the translation of the mesh 

edges is a collection of lines, which are non-concurrent in general. The 

translation technique is based on the fact the eccentricity between two 

lines varies linearly with the translation components (Mesnil, Douthe, et 

al., Form-finding of nexorades with translation technique 2018). As such, 

nexorades can be form-found by solving linear least square problems, 

in the manner of what has been done for polyhedral meshes (Poranne, 

Chen et Gotsman 2015).

The simplicity of the problem is not surprising, although it has not 

been noticed before: indeed, edge translations appear in polyhedral 

mesh modelling. Transformations that preserve edge orientation also 

preserve facet planarity, and create a linear subspace for shape mo-

delling (Pottmann, et al. 2007) (Poranne, Chen et Gotsman 2015). As a 

consequence, if the input mesh has planar facets, the nexorade created 

with the translation technique can be covered with nearly planar panels, 

although the designer has to deal with eccentricities (distance between 

the non-concurrent neutral axes of the beams).

The translation technique allows to cover nexorades with planar 

panels, which can be used as a bracing system. The authors call 

shell-nexorade hybrid the resulting structural system. The practical 

generation of the structural layout requires first to generate a mesh with 

planar facets, and then to optimally fit a panel in order to accommodate 

eccentricities.

3.2 Shape-fitting problem
The input geometry is fitted with the marionette technique, which consi-

ders a projection of the mesh as an input, in our case, the plane view, 

leaving only the altitudes of the mesh vertices as design variables. The 

technique allows to express the planarity constraint with a linear equa-

tion. Additional positional constraints are imposed to some nodes for a 

better control of the shape, and are also linear.
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  (2)

The matrix A encodes the planarity constraint for the facets, as des-

cribed in (Mesnil, Douthe, Baverel, & Léger, Marionette Mesh: from 

descriptive geometry to fabrication-aware design, 2016). The matrix B is 

a sparse matrix, the only non-zero coeffi cients Bij are so that the ith node 

has the altitude Cj. The two constraints can be assembled by stacking 

the matrices A and B in columns. The optimization becomes a linearly 

constrained linear least square problem.

  (3)

The solution of the problem is classical, but recalled here for the sake of 

completeness. The constrained problem is easily solved with the aid of 

Lagrange multipliers λ: optimal values X* and λ* satisfy following linear 

equation.

  (4)

In practice, the system is solved by performing Cholesky decomposition 

of the symmetrical matrix on the left-hand side. Few position constraints 

are chosen so that the problem is not over-constrained, and the matrix 

of the left-hand side remains invertible. This guarantees the feasibility of 

the solution using Cholesky decomposition. The solution is fast, even for 

large number of facets (Sorkine et Cohen-Or 2004).

Figure 6: Some planar tiling (top) and associated nexorade patterns 
created by edge translation (bottom).
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The matrix A encodes the planarity constraint for the facets, as des-
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  (3)

The solution of the problem is classical, but recalled here for the sake of 
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  (4)

In practice, the system is solved by performing Cholesky decomposition 

of the symmetrical matrix on the left-hand side. Few position constraints 
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Figure 6: Some planar tiling (top) and associated nexorade patterns 
created by edge translation (bottom).
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3.3 Mesh planarization

The transformation of a mesh into a nexorade introduces eccentricities, 

as illustrated in Figure 7, where the end the members are highlighted 

with black dots (notation P+i) and the corresponding closest point on 

the attached member is highlighted in white (notation: P-i). We write ti= 

P-i – P+i.
 

Figure 7: The form-found nexorade as a collection of lines and the local 
planarization problem

With the geometry of Figure 7, the designer does not deal with a wa-

tertight mesh anymore and must fi t envelope panels to the beams and 

wants thus to minimize following quantity:

  (5)

With a planarity constraint and the additional design restriction: 

  (6)

This optimization is a specifi c example of the marionette technique, with 

non-parallel lines and is also expressed as a linearly constrained least 

square problem (Mesnil, Douthe, Baverel, & Léger, Marionette Mesh: 

from descriptive geometry to fabrication-aware design, 2016). Each 

equation can be solved independently for each facet. This makes the 

computation extremely fast and reliable.

In order to better understand why eccentricities arise from the trans-

formation into a nexorade pattern when constructing with planar facets, 
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one can count the degrees of freedom imposed by the planarity and 

member straightness. We write ne and nv the number of edges and ver-

tices in the nexorade, as shown on the bottom of Figure 6. Each edge of 

a nexorade pattern contains four nodes, except at the boundaries (see 

bottom of Figure 6), so that nv~2ne, in addition there are 4ne alignment 

constraints in the whole nexorade patterns. For two-dimensional nexora-

de patterns (for example in the XY plane), there are initially 2nv degrees 

of freedom and 2ne alignment constraints. The estimation of the number 

of degrees of freedom for nexorade patterns without eccentricities is 

thus given by equation (7).

  (7)

The dimensions of the design spaces are similar, and differ slightly in 

practice essentially because of "free” borders (where some members 

have less than four nodes). When adding planarity constraints on the facets 

(the number of constraints is proportional to the number of facets), one 

over-constrains the design space of eccentricity-free nexorade pat-

terns and is left only with nexorade patterns inscribed in a plane. The 

complexity of milling operations mentioned in this article is thus not a 

limitation of the proposed form finding technique, but rather an intrinsic 

limitation of nexorades.

3.4 Beam orientation
In timber structures, rectangular cross-sections are commonly used. It is 

therefore preferable to build torsion-free beam layouts, i.e. to find beam 

orientation where the beam central plane meet along a common axis. 

The solution for this problem is not obvious for quadrilateral meshes, but 

three valent meshes always admit constant face offsets (Pottmann, et al. 

2007).

For nexorades, the offsetting problem can easily be solved, because 

there are only three-valent connections (from a combinatorial point of 

view), but two-valent connections from a technological point of view: 

any choice of beam discrete normal yields a torsion-free beam layout. 

Figure 5 illustrates this statement and the notations for orientation of the 

beams and panels. The letters Y and Z describe the local material frame 

corresponding to the strong and weak axis respectively.
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Figure 8: Notations for the orientations of beams and panels.

We can defi ne the normal as the bisector vector between the adjacent 

faces normal, as shown in equation (8).

  (8)

This choice minimizes the maximal angle between a panel and its 

supporting beams, which is a constraint in the chosen fabrication set-up. 

Indeed, as shown in Figure 9, a robot mills the groove for the assembly 

between beam and panel: large angles can lead to collisions between 

the tools or robots. 

Figure 9: Groove milling for panel/beam attachment.
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3.5 Optimization of connection details

The choice of structural connection details depends on mechanics 

and assembly. End grain screws are used in the pavilion because they 

are simple to assemble and do not constrain the assembly kinematics. 

Details using connecting plates in the timber could not be implemented 

due to the small width of the members (60 mm), but could be used if 

high structural performance is required. Their main limitation is however 

the restriction of assembly kinematics, which add an new challenge 

for the construction sequence planning and execution. Fire safety can 

also be an issue if the plates are exposed to fi re. Glued connections 

are another alternative with good mechanical performance, but are not 

suited for in-situ assembly, and do not fi t the design requirements of 

the project. End-grain connections are thus a good alternative to more 

conventional connections. Moreover, the forces in the connectors are 

limited in shell-nexorade hybrid, so that yield of connections is a lesser 

design issue than in classical nexorades, and their lower mechanical 

performance is not as critical as in other timber structures. Nonetheless, 

they yield some diffi culties for the detailed planning, which are discus-

sed in this section.

The end-grain screwed connections are subject to practical limita-

tions, illustrated in Figure 10: the distance between the screw axis and 

the beam boundary should remain inferior to 24 mm, while the distance 

between screws should be superior to 24 mm. For some fans, the en-

gagement length is inferior to the screw length (200 mm), meaning that 

some collisions between screws might occur: as a result, the position of 

the screw must be adjusted.

Figure 10: Geometrical constraints for the screws layout. Left: Admissible 
position for screws (white area), and minimal spacing between screws 
(blue area). Right: a nexor where the screws are longer than the 
engagement length and potential intersections between them. 
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The designer aims at maximizing the distance between the top and 

bottom screws, as it increases the lever-arm, and thus resistance of the 

connection detail. This must be done without collisions between the 

screws. This is therefore a constrained optimization problem: the screw 

layout must be collision-free and respect the bounding box shown on 

the left of Figure 10. The parameters of the problem are the position of 

the neutral axes in the local plane of the in-coming beam: the screws 

can be moved along the red arrows drawn in Figure 10. The screws have 

a determined orientation: they are aligned with the beam neutral axis. 

Just like in the form-finding of nexorades by translations presented in 

Section 3.2, the distance between two screws depends linearly on the 

amplitude of the translation. The optimization problem of equation is thus 

a linear programming problem. Fortunately, this problem is not highly 

coupled: the optimization problem can be solved for each fan separately 

with the simplex method. 

4. Structural behavior of shell-nexorade 
hybrids

4.1 Modelling assumptions and design iterations

The structure is modelled with the finite element technique, in order to 

assess the structural response under non-symmetrical loads. In the pre-

liminary structural design, the cross-section was set to 120 mm × 60 mm, 

assuming that 20 mm of static height at most would be milled because 

of the eccentricities. This conservative assumption allowed to quickly ite-

rate over the geometry without calculating the beam cross-section after 

milling. The plywood plates can be modelled with an isotropic material 

law with a Young’s Modulus of 8 GPa. A linear elastic model is computed 

with Karamba, a finite element software integrated in Rhino/Grasshop-

per (Preisinger 2013), and it was checked that every connection detail 

was safe. This ensures that the pavilion satisfies the ultimate limit state, 

but a better approximation of the collapse load could be given by yield 

design theory or by a geometrically and materially nonlinear analysis 

(GMNA).

Design iterations were performed at the level of the design geometry, 

without generating the final geometry of the members. It allowed to cre-
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ate a shape with a strong curvature that provide geometrical stiffness. 

It also appeared unsurprisingly that decreasing the engagement length 

improved the structural response of the structure. A design approach 

purely driven by the optimization of the structural response would result 

in reducing the engagement lengths. The engagement lengths of indi-

vidual fans became thus design parameters once a satisfying geometry 

was found. The minimization of engagement lengths is limited in practice 

by two constraints: it widens the bounding box of the panels, and small 

engagement lengths might result in unreachable areas to insert the end-

grain screws. The design iterations had thus to take structural response, 

fabrication and assembly constraints into account.

4.2 Benefits of shell-nexorade hybrids
We propose to assess the benefits of introducing plates as bracing 

elements by comparing the performance of the as-built geometry and 

cross-sections for the shell-nexorade hybrid and a nexorade without pa-

nels. We assume that the load apply in the same way to both structures. 

The displacements are significantly lower in the shell-nexorade hybrid, 

especially for non-symmetrical wind and accidental loads, as seen on 

the left of Figure 11. Forces are also significantly decreases: the right of 

Figure 11 shows the utilization factor of timber under wind load alone, as 

prescribed by the Eurocode 5 (the material class is GL24h). It can be 

seen that, even without combination factor, some members of the unbra-

ced nexorade are over-stressed. Under ULS combination 1.35G+1.5W, 

the utilization factor can go up to 200 %, even without considering 

reduction factor for long term load (kmod=0), which is absolutely not 

conservative. The utilization factor of the beams in the shell nexorade 

hybrid is approximately ten times lower. The introduction of plates as a 

bracing system is thus highly beneficial, since forces and displacements 

are divided by ten, with an additional mass of 30 %.
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Figure 11: Displacement under different loads (left) and utilization ratio 
of beams under wind load alone.

4.3 Scalability of nexorades and shell-nexorade hybrid

Different structural systems are available to cover areas with doubly 

curved structures. This paper focuses on nexorades, or reciprocal 

systems, and shell-nexorade hybrids. They are easy to assemble and do 

not require complex connection details. Gridshells are also a classi-

cal solution: they are highly effi cient, but at the cost of more complex 

connection details. The relative performances of the different structu-

ral systems with respect to the change of scale are assessed in the 

followings with a simplifi ed comparative study. The geometry of the built 

pavilion is used as a reference but re-scaled to span larger areas. Then, 

a sizing optimization is performed under the constraint that the structure 

satisfi es serviceability criterion and ultimate strength criterion, set here 

to 30 % of the characteristic yield strength. The height-over-width ratio 

of the beams is set arbitrarily to 2.5, and the plates have a thickness-

over-span ratio of 100. The only parameter in the sizing optimization is 

thus the beam width b.

  (9)

The results of the sizing optimization for different spans are shown in 

Figure 12. The connections between beams are assumed to be extre-

mely rigid (more than 10 000 kNm/rad), in order to sensitivity to nodal 

stiffness, an important issue for gridshells. The shell-nexorade hybrid 
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and gridshell follow the same trend: the weight increases linearly with 

the span for spans superior to 25 meters, while the nexorades follow 

a power law and are clearly outperformed by the two other structural 

systems. Notice that the gridshell is lighter than the shell-nexorade 

hybrids: the plates represent a signifi cant part of the total weight in shell 

nexorade hybrids with large spans here. This could be fi xed by working 

on hollow plates, or by using a fi ner mesh pattern for the shell nexorade 

hybrid. A precise comparison of gridsells and nexorades should be the 

topic of a more precise study.
 

Figure 12: Infl uence of the span on the weight of different structural 
systems.

The trends seen in Figure 12 can be explained with simple arguments. 

First, it should be noticed that for large spans, the governing load case 

for the nexorade is self-weight, although the shape is close to a funicu-

lar shape. 

We explain this trend by considering a cylindrical vault of radius R 

under uniform load p, proportional to the self-weight. We write b,h the 

width and height of the beams, E the Young’s modulus and ρ the volumic 

mass of timber. An equivalent in-plane membrane stiffness  can be 

computed with homogenization techniques, as already done in (Mesnil, 

Douthe, Baverel, & Léger, linear buckling of quadrangular and kagome 

gridshells: a comparative assessment, 2017). It has already been obser-

ved that the membrane stiffness is proportional to the fl exural rigidities 

of the members, which depends on the I2 and their length L, defi ned as 

L * N = R , where N is the number of subdivisions.
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  (10)

The applied load is proportional to the mass:

  (11)

The meridian force T is given by the classical formula T = pR , so that 

the strain ε is simply given by:

  (12)

The value  should be limited by a SLS criterion, for example  

This imposes a condition on the beam width. The proportionality laws de-

rived previously allow to affirm that there exist a factor k so that:

  (13)

The height h being proportional to b by hypothesis, one can thus con-

clude on the trend of the optimal weight for a nexorade that satisfies 

serviceability under self-weight.

 

The power law observed in Figure 12 does therefore find a simple 

analytical explanation. However, we observe a strong dependency of the 

result with respect to the number of subdivision in equation (13). The study 

presented in this section should thus be further extended to evaluate the 

influence of subdivision.

The membrane stiffness of gridshells and shell-nexorade hybrids 

is proportional to the cross-sectional area, which itself is proportional 

to the surface weight. Thus the sizing optimization under self-weight is 

scale-invariant, and gridshells and shell-nexorade hybrids are sized with 

respect to out-of-plane loads.
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5. Conclusion
Nexorades are structures based on an elegant assembly principle that 

generally suffer from poor structural behavior. Introducing planar plates 

as a bracing system opens a new potential of application for nexora-

des. This paper illustrates the possibilities offered by shell-nexorade 

hybrids and practical implications of using this new structural principle 

for fabrication and geometrical modelling. Several optimization pro-

blems must be solved to guarantee facet planarity, structural reliance 

and constructability. The understanding of geometrical properties of 

nexorades is fundamental in the design workflow. The numerous design 

iterations are made possible by the flexibility, robustness and speed of 

the proposed framework and by the handling of geometrical representa-

tions of increasing complexity.

A full-scale timber pavilion, shown in Figure 13, was built to validate 

the methodology proposed in this paper. The structural calculations 

show that the plates multiply the stiffness by ten with a mass increase 

by 30 %. The pavilion is checked as a temporary building with building 

codes and technical agreement, so that despite innovations on form 

finding and fabrication, it has the potential to be proof-checked by an 

independent engineer. The robotic fabrication within tolerances allowed 

the manual assembly of the structure with minimal difficulties. Shell-nex-

orade hybrids combine thus the ease of assembly of nexorades with the 

stiffness of ribbed shell structures.
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The meridian force T is given by the classical formula T = pR , so that 

the strain ε is simply given by:

  (12)

The value  should be limited by a SLS criterion, for example  

This imposes a condition on the beam width. The proportionality laws de-

rived previously allow to affirm that there exist a factor k so that:

  (13)

The height h being proportional to b by hypothesis, one can thus con-

clude on the trend of the optimal weight for a nexorade that satisfies 

serviceability under self-weight.

 

The power law observed in Figure 12 does therefore find a simple 

analytical explanation. However, we observe a strong dependency of the 

result with respect to the number of subdivision in equation (13). The study 

presented in this section should thus be further extended to evaluate the 

influence of subdivision.

The membrane stiffness of gridshells and shell-nexorade hybrids 

is proportional to the cross-sectional area, which itself is proportional 

to the surface weight. Thus the sizing optimization under self-weight is 

scale-invariant, and gridshells and shell-nexorade hybrids are sized with 

respect to out-of-plane loads.
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5. Conclusion
Nexorades are structures based on an elegant assembly principle that 

generally suffer from poor structural behavior. Introducing planar plates 

as a bracing system opens a new potential of application for nexora-

des. This paper illustrates the possibilities offered by shell-nexorade 

hybrids and practical implications of using this new structural principle 

for fabrication and geometrical modelling. Several optimization pro-

blems must be solved to guarantee facet planarity, structural reliance 

and constructability. The understanding of geometrical properties of 

nexorades is fundamental in the design workflow. The numerous design 

iterations are made possible by the flexibility, robustness and speed of 

the proposed framework and by the handling of geometrical representa-

tions of increasing complexity.

A full-scale timber pavilion, shown in Figure 13, was built to validate 

the methodology proposed in this paper. The structural calculations 

show that the plates multiply the stiffness by ten with a mass increase 

by 30 %. The pavilion is checked as a temporary building with building 

codes and technical agreement, so that despite innovations on form 

finding and fabrication, it has the potential to be proof-checked by an 

independent engineer. The robotic fabrication within tolerances allowed 

the manual assembly of the structure with minimal difficulties. Shell-nex-

orade hybrids combine thus the ease of assembly of nexorades with the 

stiffness of ribbed shell structures.
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Figure 13: A view of the completed pavilion. 
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Abstract 
This paper focuses on the computational design and optimization aspects 

of a large scale, realized robotic concrete printing project, as well as 

material behaviour and robotic fabrication layout. The project has been fully 

realized within Grasshopper3d, from design to fabrication control, with the 

use of several plug-ins, such as Anemone, Boids library and Taco, and a 

series of custom components created specifically for this purpose, through 

light scripting. The core of it is an agent based variable growth algorithm, 

optimised for concrete tolerances, fall-off angle and weight management, 

as well as the robot's information management threshold.

The paper presents the design methodology as well as the optimization 

techniques embedded within the morphogenetic process of the objects. In 

addition to that there will be given justification for the choice of an agent ba-

sed modeling approach in contrast to a physics simulation process that was 

initially used, with a comparative assessment of the two methods. Finally, a 

series of other issues will be discussed, from material tolerances and fabrica-

tion optimization, to real-time visualization methods for the geometry. 

1. Introduction

Over the last few years additive manufacturing with concrete has con-

tinuously increased in size and applicability (Lim S. et al, 2012) but still 

remains a highly complex fabrication process. Among a variety of potential 

materials, concrete has emerged as one of the most promising materials 

for automated layered depositing fabrication at the building scale. Due to 

its weight there is a major impact on the stability (Khoshnevis et al, 2006) 

of the object-in-print but also the issue of printing cantilevers should be 

addressed. The necessity and opportunity for design related aspects is 

demonstrated in the establishment of several new companies (Dini, 2018, 

CyBe-Consturuction, 2018, XtreeE, 2018, incremental3d, 2018). However 

the presented project does take full advantage of the articulation abilities 

of six-axis industrial robots and implies the possibilities of differentiated 

material organizations that allow for performance-oriented construction 

methodologies (Oxman et al, 2011). Apart from that, it is an exploration of the 

potential for formal expression that concrete extrusion may unlock, through 

the use of self organizational design strategies.
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Figure 0: Exhibition: LIQUID ROCK (by Marjan Colletti, Georg Grasser, 
Eftihis Efthimiou, Alexander Karaivanov, Javier Ruiz,Institute for expe-
rimental Architecture, REX/LAB, University of Innsbruck, The Bartlett 
School of Architecture, UCL, BAUMIT GMBH) January 24–March 3, 
2018, GALERIE GÖTTLICHER, Krems, Austria. Photo: (Philip Super).

2. Design strategy/growth algorithm 

With the democratization of robotic fabrication, various approaches have 

been implemented for the layout, but also for the creation of paths for 

the robots (eg. Bhooshan et al., 2018; Rust et al., 2016; Vasey et al., 2015). 

Each approach describes a different level of awareness of the overall 

design, on the level of the algorithm, that signifies an equivalent metho-

dology for optimization.

 The design paradigm followed for this project is Agent Based 

Modeling. Agent-Based Modeling is the modeling of phenomena as 

dynamical systems of interacting agents (Castiglione, 2006). Every 

calculation of the system is being performed on an agent level, and the 

agent is not aware of the system. Instead, the gnosis of the agent lies 

on a lower level of interaction. In this type of design systems, any type 

of complex behaviour emerges from the interactions of the agents on 

a local scale. This approach has been integrated in architectural design 

(e.g. Stuart-Smith, 2016), for both the morphogenetic and optimization 

potential it provides.
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More precisely, in the center of the project lies a variable growth algo-

rithm, developed for Grasshopper, with the use of Anemone (Zwierzycki, 

2015) and Boid Library (Pernecky, 2015).

2.1 Morphogenetic strategy 
The process starts with the design of a base curve. The curve then gets 

divided in a number of points, such that they maintain a set distance 

between them. Every single one of these points is trying to avoid its 

neighboring points, by aiming to maintain a distance that is incrementally 

larger than the current one. To achieve this goal, for every single point, 

the neighbours within a specific range (the aforementioned distance) 

are retrieved and their average point is calculated. The point then moves 

away from it, relative to the distance that it is trying to maintain. After 

this movement, a new curve is interpolated over the updated points and 

the process is iterated, with the initial distance value. The growth, at 

this point, occurs from the imbalance that occurs between the distance 

between the points and the repulsion radius. At each iteration the total 

length of the curve increases, resulting in an ever increasing number of 

division points.

 

Figure 1: Agent repulsion, relative to distance.

Since the growth is generated on an agent level (agents being the 

points from the subdivision), the same logic can be applied to multiple 

curves. In order for that to work, we need to be calculating the repulsion 

amongst all points, following the curve division, regardless of which initial 

curve they stemmed from. After the vector operation is completed, the 



 238 AAG2018  239

Figure 0: Exhibition: LIQUID ROCK (by Marjan Colletti, Georg Grasser, 
Eftihis Efthimiou, Alexander Karaivanov, Javier Ruiz,Institute for expe-
rimental Architecture, REX/LAB, University of Innsbruck, The Bartlett 
School of Architecture, UCL, BAUMIT GMBH) January 24–March 3, 
2018, GALERIE GÖTTLICHER, Krems, Austria. Photo: (Philip Super).

2. Design strategy/growth algorithm 

With the democratization of robotic fabrication, various approaches have 

been implemented for the layout, but also for the creation of paths for 

the robots (eg. Bhooshan et al., 2018; Rust et al., 2016; Vasey et al., 2015). 

Each approach describes a different level of awareness of the overall 

design, on the level of the algorithm, that signifies an equivalent metho-

dology for optimization.

 The design paradigm followed for this project is Agent Based 

Modeling. Agent-Based Modeling is the modeling of phenomena as 

dynamical systems of interacting agents (Castiglione, 2006). Every 

calculation of the system is being performed on an agent level, and the 

agent is not aware of the system. Instead, the gnosis of the agent lies 

on a lower level of interaction. In this type of design systems, any type 

of complex behaviour emerges from the interactions of the agents on 

a local scale. This approach has been integrated in architectural design 

(e.g. Stuart-Smith, 2016), for both the morphogenetic and optimization 

potential it provides.

 238 AAG2018  239

More precisely, in the center of the project lies a variable growth algo-

rithm, developed for Grasshopper, with the use of Anemone (Zwierzycki, 

2015) and Boid Library (Pernecky, 2015).

2.1 Morphogenetic strategy 
The process starts with the design of a base curve. The curve then gets 

divided in a number of points, such that they maintain a set distance 

between them. Every single one of these points is trying to avoid its 

neighboring points, by aiming to maintain a distance that is incrementally 

larger than the current one. To achieve this goal, for every single point, 

the neighbours within a specific range (the aforementioned distance) 

are retrieved and their average point is calculated. The point then moves 

away from it, relative to the distance that it is trying to maintain. After 

this movement, a new curve is interpolated over the updated points and 

the process is iterated, with the initial distance value. The growth, at 

this point, occurs from the imbalance that occurs between the distance 

between the points and the repulsion radius. At each iteration the total 

length of the curve increases, resulting in an ever increasing number of 

division points.

 

Figure 1: Agent repulsion, relative to distance.

Since the growth is generated on an agent level (agents being the 

points from the subdivision), the same logic can be applied to multiple 

curves. In order for that to work, we need to be calculating the repulsion 

amongst all points, following the curve division, regardless of which initial 
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agents are placed back in lists as per their parent curves, in order for 

the new curves to be interpolated. This allows for different curves to be 

interweaving along their growth, so that visual continuity is maintained.

Although initial distance between the points is fixed, the search 

radius for the repulsion may differ from point to point. This leads to a 

variable growth rate along the curve. The variation in search radius is 

controlled by a scalar field, created either by an attractor system or by 

a noise function. Whenever the curve enters the “stronger” areas of the 

scalar field, it grows more wildly, whereas inside the “weaker” areas it 

grows less vividly (or even not at all, should the repulsion radius reach 

values below the division distance). This allows for control over the direc-

tionality of the growth and the overall volume placement of the structure.

Figure 2: Variable repulsion distance.

Along with the growth movement, each point is also moved vertically by 

an increment. Each new curve that is formed, lies on top of the previo-

us one. The aggregation of these growing curves creates the general 

structure and also describes the morphogenetic process of the object. 

The increment by which the agents are moved vertically amounts to the 

layer height of each printed layer. By using a scalar field, that controls 

elevation, variable layer height can be achieved.
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2.2 Print optimization and stability

Each iteration of the curve growth is being used as a print layer path. 

To achieve a continuous printing path, the final 10 orientation planes 

from each curve are tweened between the current curve and the next, 

so as to gradually cover the ground between the two curves. In order 

to achieve that, it is crucial that the seam of each curve is placed at the 

closest point along said curve to the seam of the previous one. However 

a seam is still visible after this process (Fig. 3), mainly due to the extru-

sion speed, which needs to be specifically adjusted for the seam. This 

problem can be also solved by using an alltogether spiral print path, by 

tweening the elevation value of every point along a curve. However, ta-

king into account the variable layer height and the diverging print plane 

per layer, the tween solution appears more straightforward. 

Figure 3: Seam management and resulting imperfections.

Given that the fabrication method is Fused Deposition Manufacturing, 

we needed to maintain control over the overhang angle per print layer, in 

order to ensure stability during printing and to avoid drips. In this domain 

we need to take into consideration that the use of supports was not an 

option. This situation called for an optimization step that was integrated 

within the morphogenetic scheme of the object, so that the object never 

exceeds a maximum overhang angle value at any single point. In order to 

solve that, we used a trigonometric function, that multiplies the elevation 
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value (ie. the distance between the curves at any given point) with the 

desired overhang angle tangent. This yielded the maximum length that 

the movement vector of the agents may attain, without counting in the 

elevation. From that point, it was quite easy to have each movement 

vector cap out at this length, with the use of a simple conditional. For the 

object fabricated, the overhang value was set to 45o. However, we were 

able to achieve much greater overhang angles, during our trials.

Figure 4: Overhang angle thresshold.

Another issue that had to be addressed was overall stability of each 

geometry, both as a final object, as well as during every stage of the 

printing procedure. In order for the objects to stand, the center of mass 

needs to be within the base curve, ie the initial curve. To ensure that, 

the average point of each layer was calculated, as well as the average 

point of every point in each geometry, up to the current iteration. Both 

points where then projected on the base curve’s plane, along the gravity 

vector. Should any of the projected centers of mass prove to be outside 

of the confines of the base, the code would exit the loop and a warning 

would be given. Taking into consideration that the base curves need 

not necessarily be convex, during the test period the convex hull of the 

base curve would be used. However, for the final objects the actual base 

curves where used.
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Figure 5: Center of mass calculation, per layer and as a whole.

Since in the final objects growth was oriented solely towards the center 

of the installation, it is only logical that this would lead to an uneven 

distribution in weight, that would work towards tipping the objects over. 

To counteract this unilateral growth that was driving the center of mass 

away from the center of balance, a second force was implemented, that 

was pulling the geometries away from the center of the installation. 

This force, although it remained unnoticed and was counteracted by the 

growth in the more volatile area of the geometry, created an inclination 

at the backside of the objects and provided a comprehensive method for 

any center of mass correction necessary.

Figure 6: The initial curves are in black, the final in blue. The amount of 
backwards inclination needed for center of mass correction is visible, here.
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2.3 Processing data

A major hurdle we had to overcome was the data processing capability 

of the robots. It appears that the robots have a cap on their processing 

capabilities, due to a limited memory, for loading and running printing 

paths. This translates as an upper threshold on the amount of orienta-

tion planes, that is to say the amount of points, that the robot can be 

programmed to pass through during a print. This attribute indicated 

towards the resolution of the final objects and, alongside printing time, 

weight management and material issues, has been crucial to the de-

sign’s formation. Our early designs would amount to upwards of 250 000 

orientation planes, which would translate to a significant amount of path 

curves per object, that had to be loaded individually. We strove to have 

each of the geometries be comprised of no more than 70 000 orienta-

tion planes, which translates to a more manageable amount of paths per 

object, that had to be individually loaded. We aimed for the same amount 

of general volume covered as in the initial tests. Towards that goal, we 

had to work in two directions. First, we managed to optimize the design 

itself by increasing the distance between the agents and by adjusting 

the repulsion radius accordingly, something that, generally, increased the 

size of the folds. Also, we exaggerated the variability of the growth rates, 

resulting in areas that would almost not be affected at all by the growth.

Secondly, we followed a post-processing optimization protocol, 

where we removed the less significant agents for the curves, in terms of 

curvature. This was made possible by merging points that had an ang-

ular deviation from their neighbors under a specific threshold. The aim 

for that implication was mainly to drop the point count on the smoother 

areas on the curves, where there was minimum to no growth. For this 

reason we used a custom function that worked on the level of the 

agents and thus does not affect the curvature degree of the curve. Even 

though the “Curve to Polyline” command that is built-in in Grasshopper, 

and could also be used, is very effective in decimating the smoother 

areas of the curves, it tends to increase the point count at the areas 

of the folds, where we can find bigger curvature values. That is to be 

expected, since curvature cannot be represented in curvature degree 1 

and has to be approximated, instead, with many short polyline segments. 

This process led to a decrease at the scale of 8–12 % in the total amount 

of the points, without any major impact on the appearance of the curves. 

The mass of the objects is directly linked to the length of the paths used.
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2.4 Visualization

An intricate issue that had to be addressed during design was how to 

visualize the outcome of the growth algorithm in real time, in order to 

assess the results both in terms of aesthetics and optimization. Given 

that the curves generated tended to stack up extremely densely, the 

display of the curves alone could not give an adequate overview of the 

general geometry. In terms of appearance, piping the curves works quite 

nicely towards depicting the final outcome, since, apart from wrapping 

geometry to allow for shading, it generates the stratified look of the 

extrusion layers. Since the number of control points per curve was rather 

large, a simple NURBS piping was not an option, due to performance 

issues. For a curve of 1 000 control points, the amount of time required 

for a pipe measures upwards of 4 seconds on a performance pc, and 

the definition would have to work for 14 curves in parallel, that would 

grow for a total of 168 iterations. An alternative to that was using a Mesh 

pipe. This was a faster procedure by the tenfold, but although it would 

not crash, it would fail to generate a valid mesh pipe at some curves and 

would sometimes show inconsistent normals at the seam of the curves, 

when the point count was too high. However much faster this method 

may have been, in order to visualize the procession of the growth in real 

time and to avoid weighing down on our definition, in the end we put the 

piping approach to the side and opted for a custom lineweight & color 

approach. We used a color value, taken from a color gradient, relative to 

each curve's print layer index, and an absolute thickness value, relative 

to median layer thickness. Although this did not generate any shading, it 

created an over-stylized, comprehensive display of our geometry with the 

minimum amount of computational strain. Since the actual curves that 

are being generated are used and no extra geometry is being created, 

this is the lightest approach. It has to be stated that this option was only 

used for the real time assessment of our geometry, whilst the code was 

running.
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2.3 Processing data
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Figure 7: Comparison of the three visualization strategies. Top: Mesh pi-
ped & rendered. Bottom left: vanilla curves. Bottom right: Color gradient 
and thickness.

3. Agent based vs physics approach

During the early stages of design, we utilized a physics-based pipeline 

to simulate growth, with the use of “Kangaroo Physics 2.42” (Piker, 2017). 

This would entail subdividing a base curve into a series of segments of 

a set length, which were set as springs trying to attain a length incre-

mentally larger than their current one, and by using sphere colliders, with 

a radius incrementally larger than half the subdivision length, so as to 

avoid overlap and drive the points away from their neighbours. This pro-

cess was then iterated, by further subdividing the line segments, when 

they would reach more than twice the set length, resulting in growth.
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3.1 Comparison

In general, the physics approach proved to be more computationally 

extensive, resulting in an all around heavier definition both to run, and 

to tweak. After each iteration, the process would jitter the list of lines, 

demanding reordering for seam continuity, in order to achieve a spiraling, 

continuous extrusion path. A means of re-ordering the lines is joining 

them and then exploding the resulting curves. Since the whole logic of 

the definition works on a line basis, the resulting curves were in fact pol-

ylines, or of curvature degree 1, in contrast to the smooth, degree 3 cur-

ves of the agent based pipeline. Taking into consideration the angle and 

length management goals that Kangaroo is providing us with, it was eas-

ier to optimize the definition for a better “length/ area covered” ratio, by 

normalizing the length and angle values for each line segment. However, 

it was way more difficult to achieve variable layer height in this manner, 

as well as setting an overhang angle threshold, and next to impossible 

to achieve variable growth, since “Sphere Colliders” only calculates 

collisions between equally sized spheres. Another issue that remains, is 

some gaps that appear in the growth, since most of the curves would 

increase in size in every generation, but would cross the subdivision 

threshold every “n” generations. This would lead to a periodic increase of 

the growth rate, that would create areas that would easily missprint. 

Figure 8: Close view of the inconsistencies, in the physics approach, in 
contrast to the smoother agent based approach curves.
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Figure 9: Path length optimization analysis in the physics based app-
roach. The length is shown in arbitrary units.

An agent based approach, as was described, proved to be by far and 

large lighter computationally, easier to write and optimize, more flexible 

to support variability and locality and, all in all, more intuitive. The latter is 

a very important factor, taking into account the fact that the project was 

part of a university class and, hitherto, had to be assessed also didactically.
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4. Additive layered deposition layout
Our material extrusion process directly positions material that is mixed 

and ready to cure. Currently we are able to choose between 3 different 

3d printing materials that slightly vary in performance and color:

Although many cement products do already include catalysts that speed 

up the process of curing, the necessity to add high impact catalysts 

allows curing reaction within several seconds which demands higher 

timing precision and challenges stability during printing (Lloret E. et al. 

2017).

Our extrusion tool is mounted on a 6-axis industrial robot system 

with a maximum reach of 2.55 m but using different robot models in size 

and speed doesn’t infl uence the general settings of printing.

 In context of concrete extrusion, the system has to meet high 

demands in mechanical stability as high pressures within the extrusion 

system require solid tooling properties. Initial toolsets made with plastic 

rapid prototyping immediately indicated the inevitable change to metals. 

The end-effector consists of three essential elements, the extrusion 

pipe, a mixer and an injection nozzle for the catalyst. Working with rapid 

hardening concrete mixed concrete requires the end-effector to be able 

to easily clean, quickly assemble and disassemble in order to guarantee 

longevity and avoid that concrete cures within the system. 

The printing process requires a concrete pump as well as a speci-

fi c pump for the catalyst that both continuously deliver material to the 

extrusion tool itself. The amount of material per time period determines 

the fl ow rate which has a crucial impact to the whole process itself. Low 

rates of fl ow are required in order to exactly deposit material and allow 

initial curing of previous printed morphologies. Ideal settings extrude 

lengths of approximately 15 m/min and 2.5 kg/min of concrete. The 

generated paths are highly connected to the material properties and the 
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designed morphology and challenge curing time, the fl ow-rate as well as 

its own weight. 

Given that layer height spans from 4 mm to 12 mm, we had to sub-

divide geometries into four groups that amount to an equal number of 

consecutive domains of layer height. We then assigned a different feed 

rate to each layer height domain, in order to achieve the appropriate 

variable layer thickness for every layer height. We were able to move 

from the continuous nature of the variance in layer height to a discrete 

variation in feed rate due to the forgiving nature of the material, with only 

a fl uctuation in layer width. A base speed was set, that was only slightly 

tweaked manually during the print, to ensure smooth deposition of the 

material. Based on the above, we could measure the projected weight of 

each object rather accurately and incorporate that information into the 

selection process of the fi nal objects.
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Figure 10: Fabrication layout.
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5. Results
The agent based approach proved to be efficient in the local optimiza-

tion of the geometry, in a manner such that translates and generalizes to 

the global. In reality, the structural optimization of the form is embedded 

in the morphogenetic scheme of the object. The user retains control 

through the ruleset for local interaction, but also through the use of 

intricate scalar fields that allow for targeted growth. The design strategy 

resulted in an intricate, highly complex form that satisfied construction 

needs. This justifies agent based modeling as a fabrication informed 

modeling strategy for concrete extrusion.

During the early stages of construction we opted for a total of 7 

objects. This amounted to a longer printing time, more printing paths per 

object that had to be streamed individually and a heavier final object. 

Taking into consideration that concrete extrusion is not yet a fool proof 

procedure, the longer printing time both translated to a higher margin 

in which some printing error could occur (mostly mechanical reasons), 

but also, in the case of an error, more printing hours and actual material 

would be wasted. The number of successive print paths per object is 

also relevant.

At the small time interval that occurs between two paths, both 

pumps, the concrete and the catalyst, stop flowing. At this point there 

is an increased risk for a clog, if the remaining reagents in the extruder 

do not get properly removed. Given that a clog can not just stop the 

extrusion, but can also drastically alter the viscosity of the mixture, this 

may be destructive for the entire print. For this reason, we opted for a 

solution with the minimum amount of print paths used per object.

Finally, the weight of the resulting object proved to be crucial for 

handling, transportation and logistics in general. For all of the above, we 

decided to split the initial curves in half and construct a larger amount of 

smaller, more manageable objects.

The installation consisted of a total of 14 objects, with 168 print layers 

each. The resulting height of the objects spanned from 67 cm, at the 

lowest top point of the shortest object, to 198 cm for the highest point of 

the tallest object. The print paths, as was mentioned, incorporate variable 

layer thickness, with the variability occurring even along the same layer. 

Each printing layer is generally planar, however the printing plane is not 

always horizontal; it instead diverges from the z axis, to up to 17 degrees. 

The outcome, as can be seen in figure 10 is a smooth, continuous print, 
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with the continuity of the overall form extending to the striation of the 

print layers in each separate object. This occurs because all of the cur-

ves were grown concurrently. This may be a problem if we want to add 

an extra object at a later time, which evidently will not be able to grow 

together with the initial objects but will at best grow around them. More 

importantly, though, for the aforementioned reason, the process cannot 

be segmented, to cater for an indefinite amount of initial curves or an 

immense level of resolution.

6. Outlook

Concrete printing offers a new way to think of concrete elements 

without molding even with complex geometries, and therefore huge 

savings in resources and costs. While many new forming paradigms, may 

not fit within existing production lines for now, there is a lot of oppor-

tunity in the further development of processes, the engagement within 

a larger system as well as architectural design possibilities. Robotic 

additive manufacturing allows generating differentiated local qualities 

without additional effort and material waste, it can specifically be desig-

ned towards structural, energetic or even visual qualities (Dillenburger & 

Hansmeyer, 2014). 

Through the creative act of encoding behavior, capacities, affor-

dances and material constraints, resulting forms are often organic in 

appearance and resemble the results of a physical topology optimization 

process suggesting that there may be structural implications of the 

material behavior and therefore enable performance-based material 

optimization.

Emerging from a custom workflow between the physical and the 

digital, our approach widens the general design spectrum and offers 

enormous architectural potential through specific design methodolo-

gies. These digital tools require analyzing methods, generative design 

approaches and the implementation of robotic as well as fabrication 

simulation tools to make a serious push towards applicability of concrete 

based 3D printing for the construction industry in order to benefit the 

discipline of architecture.
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Figure 11: View of the installation. Photo: Nikolaus Korab.
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Abstract
Much current research in architectural geometry focuses on developing 

formal complexity through robotic fabrication. Most robotic fabrication 

processes take place in prefabrication, not on site. In prefabrication, 

robots fabricate sub-assemblies in a factory, and these sub-assemblies 

are later manually assembled to a larger aggregate structure on site. 

An alternative approach is proposed which uses a flexible material, 

for which specific geometric strategies are developed to exploit its 

unique material characteristics. The advantages of this approach are 

the possibility of achieving formal complexity through relatively simple 

means, along with the zero material-waste typical of additive fabrication 

processes.

This approach is implemented at the Nuclear Thresholds installa-

tion at Chicago, Illinois, which applies three geometric strategies to an 

assembly of flexible cords. These include close packing, recursive bran-

ching, and looping and knotting. Digital models were used to study the 

formal possibilities of each of these strategies, focusing in particular on 

alternative types of spatial controls, both deterministic and stochastic. 

The final installation demonstrates an alternative approach to material 

form in which complex geometries are developed by exploiting the 

specific characteristics of the material itself.

1. Introduction

This project explores the representational possibilities inherent in large 

diameter flexible cords. These cords are left full length and manipulated 

through operations such as linking and stacking. An obvious advantage 

of this approach is zero material waste, along with the potential to be 

reconfigured. This focus on waste reduction follows exemplary recent 

work such as the Wood Chip Barn made of naturally grown tree forks 

(Mollica & Self, 2016).

We digitally simulated different geometric possibilities for these 

cord assemblies, developing two primary systems of spatial control, one 

entirely deterministic the other more stochastic. Computationally, the 

position of a flexible cord in space can be fully defined by a 3D spline 

curve, a data type used in architecture extensively since the late 90s 

(Lynn, 1999). In reality, flexible cords have thickness, mass, and flex-
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ibility. Consequently, digitally simulating the behavior of flexible cord 

assemblies requires computationally intensive physics simulations. The 

application of such physically accurate simulations to architecture is an 

open frontier for architectural geometry. 

Nuclear Thresholds combines advanced digital simulation techniques 

with hand-assembly. Along its length, the project transforms from a sing-

le large bundle, to a series of progressively finer recursive branches, until 

each individual cord is free. This recursive structure embeds a material 

tendency within the material itself, provoking it to self-assemble into 

specific complex geometric systems through relatively simple means. 

We believe this is an important paradigm for advanced architectural 

geometry, combining computationally intensive studio work with low-tech 

site assembly.

Conceptually, our approach was largely inspired by the research work 

of Frei Otto. In particular, we find the idea of taking the materiality of 

a design model seriously and embracing its vagaries remains a libera-

ting idea today (Spuybroek, 2014; Keller, 2017). Recent work on tensile 

structures has combined structural simulations with robotic fabrication 

(Mirjan et al., 2016). Such projects use particle spring system for their 

strand simulations. The success of this approach inspired our own mate-

rial simulations. Our project similarly develops digital models simulating 

the behavior of material strands. Although in our case the primary forces 

are gravity and self-avoidance rather than tension.

2. Project description

Nuclear Thresholds is a commemorative installation for 75th anniversary 

of Enrico Fermi’s “Chicago Pile -1’’  (CP-1), the first controlled, self-sus-

taining nuclear chain reaction. The project brief invited us to reflect on 

the nature of Fermi’s experiment, as well as the tension between control 

and the loss of control engendered by the birth of the Nuclear Age. The 

project site is a 17.5-meter square plinth on the University of Chicago 

campus with a 3.6-meter-high Henry Moore sculpture in the center.

The installation uses an assembly of flexible cords to represent the 

moment of “going critical’’, when a chain reaction becomes (barely) 

self-sustaining – such as was the case with Fermi’s experiment. The in-

stallation also represents supercriticality, the turning point when the rate 
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of fission increases, to the point of being out of control. In addition, the 

installation echoes the complex materiality embodied in the original CP-1 

experiment such as the tightly-packed pile of graphite blocks (Murray, 

2015). Finally, the installation suggests matter as something not solid but 

actually composed largely of space and energetic particles.

The Nuclear Thresholds installation is an assembly of 241 50 mm 

diameter x 23-meter-long EPDM rubber cords. The installation begins 

with a 90° arc of tightly packed cords. Then suddenly the assembly hits a 

virtual threshold and splits into two bundles. This recursive splitting con-

tinues seven more times at regular intervals until each cord is free from 

bundling. The development of the project combined material research 

and the creation of both physical and computational models. The instal-

lation contrasts a coherent, organized ‘‘solid form’’ with a breakdown 

into atomized independent parts. In so doing, the installation challenges 

the model of solidity upon which architectural geometry has historically 

relied, instead suggesting the structures of matter on a subatomic scale 

using complex full-scale geometries.

 

Figure 1: Nuclear Thresholds installation, Chicago, Illinois.



 258 AAG2018  259

ibility. Consequently, digitally simulating the behavior of flexible cord 

assemblies requires computationally intensive physics simulations. The 

application of such physically accurate simulations to architecture is an 

open frontier for architectural geometry. 

Nuclear Thresholds combines advanced digital simulation techniques 

with hand-assembly. Along its length, the project transforms from a sing-

le large bundle, to a series of progressively finer recursive branches, until 

each individual cord is free. This recursive structure embeds a material 

tendency within the material itself, provoking it to self-assemble into 

specific complex geometric systems through relatively simple means. 

We believe this is an important paradigm for advanced architectural 

geometry, combining computationally intensive studio work with low-tech 

site assembly.

Conceptually, our approach was largely inspired by the research work 

of Frei Otto. In particular, we find the idea of taking the materiality of 

a design model seriously and embracing its vagaries remains a libera-

ting idea today (Spuybroek, 2014; Keller, 2017). Recent work on tensile 

structures has combined structural simulations with robotic fabrication 

(Mirjan et al., 2016). Such projects use particle spring system for their 

strand simulations. The success of this approach inspired our own mate-

rial simulations. Our project similarly develops digital models simulating 

the behavior of material strands. Although in our case the primary forces 

are gravity and self-avoidance rather than tension.

2. Project description

Nuclear Thresholds is a commemorative installation for 75th anniversary 

of Enrico Fermi’s “Chicago Pile -1’’  (CP-1), the first controlled, self-sus-

taining nuclear chain reaction. The project brief invited us to reflect on 

the nature of Fermi’s experiment, as well as the tension between control 

and the loss of control engendered by the birth of the Nuclear Age. The 

project site is a 17.5-meter square plinth on the University of Chicago 

campus with a 3.6-meter-high Henry Moore sculpture in the center.

The installation uses an assembly of flexible cords to represent the 

moment of “going critical’’, when a chain reaction becomes (barely) 

self-sustaining – such as was the case with Fermi’s experiment. The in-

stallation also represents supercriticality, the turning point when the rate 

 258 AAG2018  259

of fission increases, to the point of being out of control. In addition, the 

installation echoes the complex materiality embodied in the original CP-1 

experiment such as the tightly-packed pile of graphite blocks (Murray, 

2015). Finally, the installation suggests matter as something not solid but 

actually composed largely of space and energetic particles.

The Nuclear Thresholds installation is an assembly of 241 50 mm 

diameter x 23-meter-long EPDM rubber cords. The installation begins 

with a 90° arc of tightly packed cords. Then suddenly the assembly hits a 

virtual threshold and splits into two bundles. This recursive splitting con-

tinues seven more times at regular intervals until each cord is free from 

bundling. The development of the project combined material research 

and the creation of both physical and computational models. The instal-

lation contrasts a coherent, organized ‘‘solid form’’ with a breakdown 

into atomized independent parts. In so doing, the installation challenges 

the model of solidity upon which architectural geometry has historically 

relied, instead suggesting the structures of matter on a subatomic scale 

using complex full-scale geometries.

 

Figure 1: Nuclear Thresholds installation, Chicago, Illinois.



 260 AAG2018  261

3. Close packing
The 1942 CP-1 experiment took place in a disused squash court under 

the University of Chicago football stadium. So, throughout our research 

on nuclear processes there was a ghostly presence of squash balls, 

echoed by the perfect spheres of physics diagrams. Initially we actually 

considered making the installation of squash bulls, but it would require 

over 15 000 40 mm diameter balls to fi ll a one-meter cube. Could the pro-

ject start with close packed region, which was then dispersed with ever 

greater porosity across the site? As built, Nuclear Thresholds incorpora-

tes many elements of this initial approach.

Figure 2: Initial design studies of 3D close packing : (a) Simple planar 
faced tiles which pack space without gaps; array #4 is the one we used 
for our spherical packing. (b) Spheres in a 3D array fi lling an arbitrary 
boundary envelope. 

We began our research studying close packed spheres. To keep the 

data lightweight, we used a 3D hexagonal array (Fig. 2a). This allowed 

us to store the data in extremely terse text fi les with whole number 

coordinate position (i, j, k). Our fi rst study was a rhino C++ plugin which 

fi lled arbitrary boundary envelopes with spheres (Fig. 2b). This approach 

successfully evoked piling, but we needed a method to add porosity. In 

the original CP-1 experiment, the particles moved through the graphite 

block in random walks. To evoke this aspect of the process, we created 

a diffusion-limited aggregation (DLA) simulation using the same 3D 

hexagonal array (Fig. 3a). We also tried translating this same data into 

a planar mesh shell, which we then relaxed to create a more organic 

morphology (Fig. 3b). This latter approach yielded porosity, but ultimately 

felt too controlled. We were searching for a system that had a sharper 

internal break, one that was more evocative about the threshold of 
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criticality which the CP-1 experiment had passed. Our project should feel 

explosive. But unlike an explosion, our installation would necessarily be 

a static form. In other words, the development of the system over time 

would need to be implied rather than enacted – a common architectural 

conundrum in our digital age (Carpo, 2011).

Figure 3: DLA simulations using a 3D hexagonal array: (a) Spheres with 
boundary inflation. (b) Planar mesh with relexation.

Ultimately, we decided to use cords rather than spheres. We could still 

represent close packing, essentially extruding a 2D hexagonal array 

along a line, like the second tile in figure 2b. This retained some memory 

of the squash court, as if the original squash balls were extruded into 

strands. To develop a typical bench section, we developed a 2D hexago-

nal array then drew a section of bench using these points. In deference 

to simplicity and gravity we limited ourselves to simple piling operations. 

This piling generally follows the 60° slope of the array, other than at 

the front of the seat where the cords are arranged vertically to make 

room for comfortable seating (Fig. 4a). Because of friction between 

the ground and bottom course, only minimal attachments were required 

at this area: loops of UV resistant zip ties at 0.5 m intervals in a run-

ning bond arrangement. As long as the bottom course is secure, this 

configuration allows the material to slump into the desired configuration 

(Murphy, 2017).
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Figure 4: Nuclear Thresholds (a) Typical 241 cord section demonstrating 
hexagonal array inside constraint envelope of ‘‘bench’’ shape. (b) This 
section follows a 4.5 m radius 90° arc until ‘‘criticality’’ is reached.

To begin the layout, we established a 4.8-meter radius guide curve on 

the ground. The first strand follows this curve exactly, starting tangent 

to the street edge of the plinth and running clockwise. Then all the 

subsequent cords start rotated 1° in plan relative to the last cord placed. 

The result is a complex sheared and curved surface (Fig. 4b). The 

start of each vertical course shares a similar 1° plan rotation. Our piling 

rule is extremely simple, but because of the embedded complexity of 

combining concentric curves and the hexagonal grid section, the implied 

sheared figure which emerges has a complex, non-uniform curvature. 

This specific result emerges from a bottom up construction process 

which proceeds strand by strand based on a simple rule. The start of the 

arc creates a narrative where a solid form is progressively produced by 

the organized accretion of smaller elements (Fig. 5).

Figure 5: Nuclear Thresholds initial 90° arc: (a) Piling cords with 1° plan 
offset results in complex shearing at edge. (b) Detail of sheared tip.
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4. Recursive branching
After the initial quarter circle, the pile of cords suddenly ‘‘goes critical’’. 

At this virtual threshold, the organization of the material changes enti-

rely, from a tightly packed, geometrically controlled pile to a series of 

independent bundles of progressively fewer cords. In our research, we 

reviewed many chain reaction diagrams (Fig. 6a). Such systems always 

involve exponential growth. In controlled experiments like CP-1 the 

chain reaction is slowed by the graphite pile. In a bomb, a similar chain 

reaction happens at incredibly fast speeds and is intended to go super-

critical. Representing such exponential growth presents an intriguing 

challenge for architectural geometry. 

Our approach was to consider the installation as a pile composed of 

roughly 256 individual elements. At the bench arc, these elements are 

bound together into a single, simple form. After 90°, a ‘‘critical point’’ is 

reached and this bundle is split in half at regular intervals, resulting in a 

recursive branching structure (Ball, 2009). These bundles manifest an 

inverse relationship between the size of the bundles and the number of 

branches as follows.
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Figure 6: Chain reactions : (a) Literal chain reaction diagram starting 
with Uranium 235. (b) Nuclear Thresholds recursive splitting diagram 
showing progressive breakdown of form from single 256 cord bundle to 
individual cords.

This recursive branching system provides a physical analog to the 

exponential logic of a chain reaction. The relatively simple arc bench 

progressively dissolves into exponential complexity (Fig. 6b). We wanted 

the first split to be extremely dramatic. This first split is horizontal and 

the top flops over itself, creating a wavelike form. This involved two very 

heavy bundles. Each 23-meter-long cord weighs 54.4 kg or 2.4 kg/m. 

Since the project is entirely hand constructed by a team of 5-7 people, 

this move had to be planned out before finishing the bench arc (Fig. 7). 

To work around the weight of the strands further downstream, we deve-
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loped a temporary fastening system based on the recursive branching 

logic. All the cords were temporarily linked together as powers of two. 

E.g., bundles of 2, then these bundles linked together to make 4, etc. 

This temporary system allowed for us to embed the recursive structure 

onto the assembly early on, while still allowing for flexibility in terms of 

the layout of the looping and knotting structures. One tension throug-

hout the process was keeping the branching legible, without the overall 

gestalt becoming too tree-like. We wanted a slightly malevolent feeling 

in keeping with our own ambivalence about the nuclear threshold that 

was momentously breached 75 years ago by Fermi and his team.

Figure 7: Construction process for recursive branching: (a) Initial setup 
sorting by bundles. (c) Typical branch using ziplock temporary ties. (d) 
Final setup for looping.

5. Loops, tendrils, and knots

The installation has a perceptual ambiguity, enacting a conflict between 

two distinct formal systems. From certain vantage points, the curving, 

form is simple and Platonic – essentially a truncated cone. This region 

identifies with a classical, centered space, the realm of dutiful reflection 

(Fig. 8a). But as you traverse the plinth, the form becomes restless and 
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incoherent. As the solid form breaks down, the successive branches 

erupt into loops, tendrils, and knots (Fig. 8b). The swirling induces a 

loss of orientation and an immersion that undermines modern notions 

of clarity and order. Architecturally speaking, we are excited about both 

models, but believe that swirling presents an opportunity for critical 

architecture to challenge many of the normative conditions and received 

ideas embedded in the world as typically constructed. Swirling space, 

however disturbing, may ultimately be a more accurate representation of 

our current world. 

 

Figure 8: Two views of the ‘‘critical point’’ : (a) The truncated cone of the 
bench directs focus to Henry Moores ‘‘Nuclear Energy’’. (b) The rupture 
of the initial split, after which the coherent form of the arcing bench 
collapses into an amorphous swirl. (c) The swirl.
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To study the formal possibilities for this swirling space, we developed 

game engine physics models at various resolutions. All of these simula-

tions are based on the same basic approach. A fl exible cord is approx-

imated as a series of linked convex meshes. The fi delity of the model 

directly relates to the granularity of these approximations. To balance 

speed and accuracy, the circular section of the cord is approximated as 

a hexagon (Fig. 9a). Our next step was to establish the length of each 

link. The higher the link count the more accurate the simulation, but at 

a certain point the simulation becomes too slow to become useful. Our 

solution was to create two simulations at different resolutions. 

Figure 9: Basic mechanism for physics simulation : (a) Hexagonal se-
ction approximates circular cord (b) solid prisms with point connections 
limit bending angle with collision detection (c) The centers of the prisms 
are connected with a spline curve, which is piped to create a single cord.

First, we developed a game engine physics simulation focused on a 

detail of four recursion levels. This model has a 3:1 ratio of length to cord 

diameter (Fig. 9b). The bending radius of the EPDM cords used is app-

roximately 0.46 meters, which defi nes the maximum twist at each joint 

(Fig. 9c). We approximated the cord bundling as a simple doubling of 

the sectional area of the guide cord. This approach reduces the number 

of at a relatively low fi delity cost, resulting in a model with 375 solid ele-

ments rather than 800 (Fig. 10a). This detail model is extremely accura-

te in terms of replicating the physical behavior of the cord assemblies. 

Such accuracy allowed us to test a variety of looping confi gurations, as 

well as study typical morphologies for how the assemblies come to rest 

after various manipulations such as dropping, pushing, and knotting. 

Second, we developed a keyframed physics simulation of the entire 241 

cord system. This model extends the ratio of length to cord diameter to 

12:1. The resulting model has 12,050 solids and is extremely ‘heavy’ com-
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incoherent. As the solid form breaks down, the successive branches 

erupt into loops, tendrils, and knots (Fig. 8b). The swirling induces a 
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of clarity and order. Architecturally speaking, we are excited about both 

models, but believe that swirling presents an opportunity for critical 

architecture to challenge many of the normative conditions and received 

ideas embedded in the world as typically constructed. Swirling space, 

however disturbing, may ultimately be a more accurate representation of 

our current world. 

 

Figure 8: Two views of the ‘‘critical point’’ : (a) The truncated cone of the 
bench directs focus to Henry Moores ‘‘Nuclear Energy’’. (b) The rupture 
of the initial split, after which the coherent form of the arcing bench 
collapses into an amorphous swirl. (c) The swirl.
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Figure 9: Basic mechanism for physics simulation : (a) Hexagonal se-
ction approximates circular cord (b) solid prisms with point connections 
limit bending angle with collision detection (c) The centers of the prisms 
are connected with a spline curve, which is piped to create a single cord.
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in behaviors that are slightly less realistic, but adequate for studying the 

overall project gestalt. We tested morphologies resulting from dropping 

the assembly and solid object collisions (Fig. 10c, 10d). 

Figure 10: Physics simulations at various resolutions and states: (a) 
Detail model at focusing on 4 recursion levels. (b) Low-resolution full 
size (241 strand) model mid-simulation. (c) Full-size model near the end 
of a simulation, before gravitational settling. (d) Full-size model used to 
study interaction with site.
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The branching area represents the loss of control implied by the original 

CP-1 experiment. Ideally, we would have set up the recursive branching 

connections, then throw the piece high in the air and let it expand and 

fall; but this was not a realistic option. Instead the installation was built 

by hand at ground level, with the thicker bundles required the most 

extensive advanced planning. Areas involving looping or knotting of the 

thicker bundles, were built up gradually out of 4-strand sub-assemblies. 

At the free ends we followed the examples of our detail simulation, 

which generated extensive looping near the bending limit of the cords. 

The overall gestalt of the branching region with its loops, tendrils, and 

knots provides a strong formal contrast to the highly controlled begin-

ning arc (Fig. 11).

 

Figure 11: Aerial photo of Nuclear Thresholds installation.
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6. Gaps
We began this project with a simple plan: produce a fairly accurate digi-

tal simulation of our installation based on the material properties of our 

flexible cords. This simulation would allow us to explore different formal 

possibilities both in terms of bundling and looping. As it turned out, the 

complexity of this simulation at a “high resolution” quickly overwhel-

med our computational resources. Consequently, most of our time was 

spent negotiating the representational gaps between our digital models 

and the actual material behavior. Several such gaps have already been 

described, in terms of granular trade-offs in the resolution of various 

simulations.

Reviewing this process from a broader perspective, the most signi-

ficant representational gap was between the methods for manipulating 

our simulation and the actual fabrication techniques. In real life, the 

process was entirely limited by the moves a group of 5–7 people could 

achieve. Accurately simulating this was conceptually possible using 

game engine physics. But in practice, at any kind of realistic level of 

detail these simulations were too computationally intensive to be useful. 

The only way to simulate the behavior of the entire bundle was to use a 

physics simulation, and keyframe various impact forces. Setting up these 

types of scenes took a long time (12+ hours), but at least ran cleanly. 

However, being limited to this type of pre-set simulation meant that 

precisely the kinds of behaviors we were most interested in were not 

possible at higher resolution levels. For instance, we could only tie knots 

effectively using interactive physics simulations, but these had to be run 

at much lower detail levels.

In the end, we decided to embrace this lack of material control as 

part of the beauty of the project. The branching was rigorously set but 

the looping portions were more contingent, working from the types of 

shapes we liked in the simulations but only following a strictly choreo-

graphed setup for the initial branchings. Given the specific representa-

tional goals for this piece, this approach made sense. But in a different 

situation a project that focused exclusively on no more than 20 strands 

could have used the same tools at a finer level of detail. This would allow 

for a significant reduction in the gap between the digital simulations and 

construction technique.
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7. Conclusion
Nuclear Thresholds challenges the model of solidity upon which archi-

tectural geometry has historically relied. The project demonstrates an 

alternative approach to material form in which complex geometries are 

developed by exploiting the specific characteristics of the material itself, 

extensively using digital simulations to predict this behavior combined 

with low tech hand fabrication techniques. 

One possible trajectory for this type of research would be to in-

troduce robotic construction techniques. This would allow for greater 

complexity in terms of both the patterns established and in the manipu-

lation of the materials themselves. A major constraint of this installation 

was working around what a team of average strength people could lift. 

Changing this constraint would modify the field of formal possibility, 

introducing an entirely new set of opportunities and constraints.

A second, alternative trajectory would be opportunity for development 

would be to focus primarily on self-assembly. Working exclusively with 

manipulation by dynamic physical forces would yield an entirely different 

set of formal possibilities. In our digital simulations the most dynamic 

results occurred by throwing the model high in the air and letting the 

cord assemblies expand stochastically. In this context the focus might be 

the specific binding patterns rather than the specific placement cord by 

cord. The site setup would simply involve adding energy to the system. In 

both cases, the accurate digital simulation of computationally intensive 

physical behaviors remains a rewarding frontier for research in archi-

tectural geometry.
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Abstract
The dome structure of the Louvre Abu Dhabi and its cladding is a mi-

lestone in architectural design and construction. The design develop-

ment and the fabrication of a large scale light test model of the dome 

spanning over the museum galleries has been presented in the AAGs 

2010 and 2012. We want to pick up the thread and give an insight 

on how we applied geometry to manufacture, assemble and install the 

cladding of the Louvre Abu Dhabi.

1. Introduction

The starting point for the museum was a sketch on a sheet of paper and 

the effort of the city of Abu Dhabi to set up a museum in the spirit of 

openness and dialogue. The dialogue began with the annual Abu Dhabi 

Art. Both Foster + Partners and Shigeru Ban have already presented 

so-called “Architecture Statements”. The current “Statement” is the dome 

of the Louvre Abu Dhabi. Jean Nouvel has designed a museum that fits 

into the traditional landscape of the United Arab Emirates. The museum 

is located at the transition from land to sea. The buildings are islands 

in the water connected by bridges and pontoons. The flat 180 m wide 

dome creates the cohesion of the parts. The initially very clear geometric 

shape of the dome shows in detail an extremely complex structuring. 

The seemingly random interweaving creates shadows. At the same 

time, the woven structure allows openings for the enter of bundles of 

sunrays. During the day, the dome shimmers in the sunlight and at night, 

the buildings are part of an urban promenade under the star dome. The 

ensemble of buildings, together with the dome, become a sanctuary and 

shelter for the valuable works of art and visitors.

Architect Jean Nouvel summarized the design idea as follows [1]: “This 

micro-city requires a micro-climate that would give the visitor a feeling 

of entering a different world. The building is covered with a large dome, 

a form common to all civilizations. This one is made of a web of different 

patterns interlaced into a translucent ceiling which lets a diffuse, magical 

light come through in the best tradition of great Arabian architecture.”

With its start into the project, Waagner-Biro’s design team was able 

to pick up a well-defined project in general and well-defined geometric 

set-up in specific developed by the teams in and around Ateliers Jean 
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Nouvel, Buro Happold, Gehry Technologies, Transsolar and further 

schools and consultants. To understand the design approach and steps 

of development we recommend reading the article presented and publis-

hed at the AAG 2012 in Paris [1]. The authors had taken the project as a 

case study for the number of stakeholders involved in the development 

of a project of this scale. The stakeholders contribute to the project by 

defining requirements. The concurrent models of the various stakehol-

ders are the expression of the requirements. When we refer to RIBA 

stages [3], the Developed Design will merge the coordinated architectu-

ral, structural and services models into one digital model. The digital 

model will always serve for multiple purposes. Benjamin Koren showed 

how the developed design may be advanced form the digital model into 

manufacturing data for a 1/33 visual mock-up. He presented this at the 

AAG 2010 in Vienna [2].

Within the standard workflow, the coordinated developed design 

model is the source for a robust framework of quantities. This is one of 

the primary outcome of the developed design. This framework is basis 

for a reliable cost estimation for the specialist contractors. 

In this workflow, Waagner-Biro was the chosen specialist contractor 

for the dome structure. The scope of works of this package included 

the design and delivery of the architecturally designed structural steel 

and the multiple layers of aluminium cladding enveloping the load-bea-

ring steel. In our paper, we will focus on the geometrical aspects of the 

technical design of the cladding.

It was Waagner-Biro’s engineers and designers task to pick up the 

developed design and work it forward to the RIBA stage Technical 

Design. The offsite manufacturing of the components, the assembly of 

the components to deliverable parts and the development of the onsite 

installation methodology are all the outcome of the technical design. The 

deliverables to site can be summarized to the groups of structural steel, 

aluminium cladding and the supporting temporary works. The permanent 

structural steel consists of 11 000 members connected by 2 700 nodes. 

The design of the bespoke steel towers positioned between the muse-

um buildings during construction phase were the key elements of the 

temporary works. The aluminium cladding enveloping the dome is the 

composition of more than 8 000 individual stars.

The authors of the paper want to illustrate the influence of geometry 

on the workflow of the preparation of production information by putting 
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the focus on the cladding design. We will show how the work of the “de-

velopment team” in the developed design stage was the basis for “tech-

nical team” in the technical design stage.

2. Geometric detailing of the cladding

The geometric pattern originates by arranging isosceles triangle re-

peated and rotated to form a system of squares and octagons [1]. The 

pattern may also be seen as four pointed stars meeting at their tips. The 

pattern is mapped to the “great circle” grid on the dome surface. The 

tessellation is true at the apex whilst it distorts towards the perimeter of 

the dome. 

Figure 1: Arrangement of stars and distortion at perimeter.

The stars are scaled in size and mapped to the further layers of the clad-

ding of the dome. The resulting pattern is rotated around the central axis 
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of the dome. These sequenced geometric operation has the consequence 

of that the layers themselves were symmetric, but the stacking of the 

layers was a fully non-symmetric structure. 

Figure 2: Arrangement of layer of stars enveloping the steel framework.

The decision to keep the faces of the triangles, quads and octagons 

planar had the consequence that bars connecting the nodes of the 

stars are folded in order to align with the adjacent faces. The bars were 

further required to have varying width to control the passing of light 

through the dome according to the translucency map of the museum. 
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The fold angles were analysed for the varying stars within the mapping 

and over the layer of the cladding. The result of the analysis was the ba-

sis of the decision on how to design the technical details for generating 

the kink. The analysis and clustering of the width of the profiles were 

the basis for the design of the aluminium extrusion profiles. To meet the 

required width, the bars are assemblies of several extruded profiles. 

Figure 3: Bars as assemblies of extruded aluminium profiles with folds 
at intersection of faces.
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The bars as assemblies of extruded profi les were connected at the four 

corners of the inner quads to stars. The mapping of the stars to the “great 

circle” grid lead to varying in-plane angles at the connections within the 

faces and non-congruent normals of the four faces meeting at single 

point. The corner cleats are the elements connecting the bars at the 

node of the stars. They remain within the plane of a face. Therefore, the 

design of the corner cleat must only consider the in-plane angle. The 

varying angles were analysed to defi ne the range angles that the corner 

cleat needs to cover.

Having each face build fully planar allows signifi cant simplifi cation in 

the joint of aluminium extrusion:

1. The cutting plane is always perpendicular to the top plane of the 
profi le. One angle was suffi cient to describe the cutting plane. No 
3D-incline-cutting planes were required. 

2. The corner cleats connecting two profi les only have to accommo-
date rotation in a plane. No spatial ration is needed. The corner 
cleats can be designed and produced following the principal of a 
single axis hinge.

Figure 4: Geometric description of the end of a bar, the position of the 
corner cleats and a typical corner cleat.

All the connections within a star are fully rigid connections. The tips of 

the stars connect to their neighbours to form a continuous structure. 

In structural terms, the star-to-star connections behave as hinged and 

sliding connections. The connections transfer out-of-plane shear forces 

from one star to the next. The geometric requirement is to depict the 

kink necessary to clad the sphere of the dome.
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Figure 5: Isometric view of the tip of a star and star-to-star connection.

Each star-to-star connection is unique. The design of the connection 

required the consideration of the kink angles, the types of profiles and 

the inner angle of the bars connecting at the tips as well as the forces 

transferred between the stars. With the sum of this information defined 

the diameter of the connecting bolts, the thickness of the endplate and 

the number and position fastening screws. 
 

Figure 6: Basic star assemblies.

In simple term, the build-up of a layer is as follows. Extruded profiles are 

assembled to bars, corner cleats join bars to stars and stars are hinged 

at their tips to a continuous layer. The layers then require structural ele-

ments to connect the layers and transfer the forces to the load bearing 

steel structure.
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3. Connecting the cladding to the  
supporting structure
The structural steel supports all the layers of cladding. Layer-to-steel 

connectors transfer the load form cladding to steel. Ideally, the cladding 

connects directly to the steel. The stacking of layers does not always 

permit the direct connection to steel; therefore, layer-to-layer connectors 

were introduced.

Figure 7: Layers of aluminium cladding enveloping structural steel and 
possible relative positions.

The general principle for the positioning layer-to-steel and layer-to-layer 

connectors are as follows:

1. Find all possible intersections between the channels of the alumi-
nium bars and the structural steel.

2. For non-direct connectors (e.g. steel to layer 2 or layer 1 to layer 3) 
check for collision with in-between layers.

3. If a bar has more than two supporting points: Remove the inner 
supports.

4. Generate structural engineering model, calculate and evaluate.

5. Adapt and modify the components of cladding according the 
results of the structural calculation.

6. Regenerate FE model, calculate and evaluate results.
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Figure 8: Digital model of layers of aluminium cladding connecting to 
structural steel.

Geometric data was necessary for the off-site fabrication. On site, 

the installation of the layers of stars had to follow the varying installa-

tion phase geometry of the steel dome. The steel dome was built in a 

pre-cambered geometry to compensate its dead load defl ection. The 

fi nal design geometry was reached after the de-prop of the structure 

from the scaffold and the full application of the cladding load. This made 

it necessary to constantly update the installation coordinates for the 

stars.

4. Conclusion

The Louvre Abu Dhabi Dome as proven to be a case study for the close 

collaboration of the teams within a stage of project execution as well as 

in successive stages of project execution. When taking reference to the 

RIBA stages it is obvious that it is necessary to share and coordinate 

geometric information throughout the workfl ow of project execution. To 

improve the performance of the workfl ow at the interfaces it proves to 

be helpful to share and understand the principles necessary to recreate 

the geometric information. 
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Figure 9: View of the inner layers of cladding of the dome (image  
courtesy of TDIC).
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Abstract
The use of the virtual work theorem enables one to derive the equa-

tions of static equilibrium of fabric, shell and gridshell structures from 

the compatibility equations linking the rate of deformation of a surface 

to variations in its velocity. If the structure is treated as a continuum 

there is no need to consider its micro-structure provided that the grid 

is fine compared to the overall geometry. Thus we can include fabrics, 

ribbed shells, corrugated shells and gridshells with a fine grid, such as 

the Mannheim Multihalle. The equilibrium equations are almost identical 

to those obtained by assuming that a shell is thin and of uniform thick-

ness, but are more general in their application. Our formulation introdu-

ces the concept of geodesic bending moments which are relevant to 

gridshell structures with continuous laths.

The virtual work theorem is more general than the energy theorems, 

which it in- cludes as a special case. Hence it can be applied to sur-

faces which admit some form of potential, including minimal surfaces 

and hanging fabrics. We can then use the calculus of variations for the 

minimization of a surface integral to define the form of a structure.

Many existing formfinding techniques can be rewritten in this way, but 

we concen- trate on surfaces which minimize the surface integral of the 

mean curvature subject to a constraint on the enclosed volume, produ-

cing a surface of constant Gaussian curvature. This naturally leads to 

the more general study of conjugate stress and curvature directions, and 

hence to quadrilateral mesh gridshells with flat cladding panels and no 

bending moments in the structural members under own weight.

1. Introduction 

The principal of virtual work was formalized by Johann Bernoulli and 

Joseph-Louis Lagrange in the 18th century (Capecchi, 2012) and today 

is taught to all civil and mechanical engineering students. It is the basis 

of the application of the finite element method to structural mechanics, 

although the formulation it produces is often identical to that obtained 

using the Galerkin method. Virtual work is closely related to the calculus 

of variations and the concept of strain energy, but it is more general in 

that it can be applied to non-elastic materials and to loads which do not 

admit a potential, such as wind loads.
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Virtual work considers a virtual or imaginary infinitesimal increment of 

displacement and deformation of a structure which may be undergoing 

a very large deformation. It then calculates the increment of work done 

by the loads on the structure and uses the divergence theorem to relate 

this to internal stresses and strains. It is perhaps better to instead imagi-

ne a virtual velocity, in which case the increment of work is replaced by 

the rate of work, or power, and in French they use the term puissances 

virtuelles, literally virtual power.

Virtual work requires the geometric compatibility equations relating 

increment of displacement to increment of deformation or strain and 

uses the virtual nature of the increment of deformation to derive the 

equations of static equilibrium. Thus the method is purely geometric, with 

no concept of resolution of forces or moments, which should hopefully 

appeal to those with a background in geometry. The advantage of using 

velocity instead of increment of displacement is that the velocity is the 

derivative of position with respect to time, and we can therefore use all 

the properties of differentiation, rather than the more unwieldy process 

of letting the magnitude of the displacement tend to zero.

It it should be emphasized that we have essentially 3 types of equation,

 » the compatibility equations relating variations in velocity to rate of 
deformation, both stretching and bending,

 » the virtual work equation and

 » the equilibrium equations relating loads to internal forces and  
moments.

Any 2 of these imply the 3rd and we will use the compatibility equations 

and virtual work to obtain the equilibrium equations. One could use the 

compatibility equations and the equilibrium equations to prove the virtual 

work equation, and engineers often use the equilibrium equations and 

virtual work to solve a geometric problem involving the deformation of 

truss structures.

We shall assume that the structure is either a continuous shell or fa-

bric structure, or has a fine grid so that it can be treated as a continuum, 

both from the geometrical and structural points of view.

In general we will follow the notation in Green and Zerna (1968) for 

both geometric quantities and quantities such as force and stress.  
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There are many books and papers on shell theory, for example Timoshenko 

and Woinowsk-Krieger (1959), Flügge (1973), Calladine (1982) and 

Axelrad and Emmerling (1988), but in our view the notation in Green and 

Zerna is to be preferred because it has the added advantage that it is 

essentially as that used by Einstein for the general theory of relativity 

(Dirac, 1975), where, of course, the stress-energy tensor causes the 

curvature of space-time so that stress is essentially a geometric concept 

with principal values equal to the density and the 3 principal stresses.

The references cited in the previous paragraph could be loosely 

described as ‘‘engi- neering’’ texts. But there are numerous other rele-

vant references in mathematics, architectural geometry and computer 

graphics including Kupferman et al. (2017), Vouga et al. (2012), Yang et al. 

(2011), Jiang et al. (2015) and Diamanti et al. (2014).

2. The application of virtual work to pin 
jointed space structures 
Before considering shell structures let us examine a simpler case, 

that of pin jointed space structures. This enables us to understand the 

fundamental idea behind the application of virtual work. One could 

imagine a shell, or even a 3 dimensional continuum, as being made up 

of a very fine structure of pin ended members, and indeed this is done 

in the numerical methods, peridynamics (Silling and Lehoucq, 2010) and 

smoothed particle hydrodynamics (Monaghan, 2012). At the molecular 

level the assumptions of continuum mechanics break down, so that a pin 

jointed framework is theoretically just as realistic as a continuum.

The length Li of the member with ends at nodes numbered 𝑎𝑎i and bi 

is given by Pythagoras’ theorem, 
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L2
i = (xai −xbi) · (xai −xbi) (1)

where x j is the position vector of node j.

Differentiating with respect to time we obtain

2LiL̇i = 2(xai −xbi) · (ẋai − ẋbi)

so that

L̇i =
(xai −xbi) · (ẋai − ẋbi)

Li
. (2)

The virtual work equation is

n

∑
j=0

(p j · ẋ j) =
m

∑
i=0

(
TiL̇i

)
(3)

where the members are numbered from 0 to m and the nodes are numbered from 0
to n. p j is the load applied to node j and Ti is the tension in member i.

where xj is the position vector of node j.
Differentiating with respect to time we obtain
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to n. p j is the load applied to node j and Ti is the tension in member i.
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Therefore using (2),

n

∑
j=0

(p j · ẋ j) =
m

∑
i=0

(
Ti

Li
(xai −xbi) · (ẋai − ẋbi)

)
.

But this applies for any virtual set of nodal velocities. So if we imagine that all the
nodes are stationary except for node j

p j · ẋ j =
m

∑
i=0

(
Ti

Li
(xai −xbi) ·

(
δ jai ẋ j −δ jbi ẋ j

))

in which

δ jai = 0 if j �= ai

= 1 if j = ai .
(4)

Therefore since the direction of ẋ j is arbitrary,

p j =
m

∑
i=0

(
Ti

Li

(
δ jai −δ jbi

)
(xai −xbi)

)
(5)

which are the equilibrium equations that we could have obtained by resolving forces at
the nodes. We do not actually need the δ jai and δ jbi in a numerical implementation
since we sum over all the members adding forces to the nodes as appropriate.

Thus any 2 of equations (2), (3) or (5) imply the third.

Equation (3) looks like a statement of conservation of energy, rate of work being
done by loads equal rate of work being absorbed by members, but there is no
suggestion the the deformation or the forces are ‘real’, provided that ẋ j and L̇i are
geometrically compatible and p j and Ti are in equilibrium with each other.

Note there is absolutely no assumption that the displacements are small, although
we do have to consider velocities or increments of displacement. Li is the current
length of a member, which might be stretched to many times its original length.
Similarly x j are the current positions and the initial member lengths and positions
do not appear at all. Indeed there may be no meaningful concept of initial lengths
and positions since we may have to move nodes and stretch or compress members
to fit the structure together, possibly deforming the members permanently.

There is also no assumption about material properties, the members do not have to
be elastic and we have made no assumption about the relationship between Ti and
Li.

2.1 The stiffness matrix

We are not concerned with stiffness in this paper. However, since there is a great
deal of confusion attached to the subject, let us differentiate (5) with respect to

But this applies for any virtual set of nodal velocities. So if we imagine 

that all the nodes are stationary except for node j

Emil Adiels, Mats Ander, Erica Hörteborn, Jens Olsson, Karl-Gunnar Olsson, Alexander Sehlström,
Paul Shepherd, Chris Williams

Therefore using (2),

n

∑
j=0

(p j · ẋ j) =
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δ jai ẋ j −δ jbi ẋ j
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time,

ṗ j =
m

∑
i=0

(
d
dt

(
Ti

Li

)(
δ jai −δ jbi

)
(xai −xbi)

)
+

m

∑
i=0

(
Ti

Li

(
δ jai −δ jbi

)
(ẋai − ẋbi)

)
.

(6)

If the members are elastic, or if they are plastic and we have sufficient knowledge of
past deformation, we can write

d
dt

(
Ti

Li

)
= si

L̇i

Li
= si

d
dt

(logLi) (7)

where the member stiffness si may itself be a function of the current Li.

Then

ṗ j =
m

∑
i=0

(
si

L̇i

Li

(
δ jai −δ jbi

)
(xai −xbi)

)
+

m

∑
i=0

(
Ti

Li

(
δ jai −δ jbi

)
(ẋai − ẋbi)

)

=
m

∑
i=0

((
δ jai −δ jbi

)(
si
(xai −xbi)(xai −xbi)

L2
i

+
Ti

Li
I
)
· (ẋai − ẋbi)

) (8)

in which I is the unit tensor in 3 dimensional space.

The term containing si is the elastic stiffness and the term containing
Ti

Li
is the

geometric stiffness. The geometric stiffness is so called because it only depends
upon the geometry and the state of stress, not the elastic properties, except in so
much as they may influence the state of stress.

3 The equations of static equilibrium of shell structures

The concept of virtual work is much more difficult to grasp for shell structures
than for the pin jointed structures described in section 2 because the associated
mathematics involving the differential geometry of a deforming surface is complicated.
Therefore, rather than leave the main results until after they have been proved, we
will quote them now as an incentive to follow their derivation.

The equation of equilibrium of forces is

∇ ·σ+p = 0 . (9)

This is a vector equation corresponding to equilibrium in 3 directions, that is the 2
directions tangential to the surface and the normal direction. The vector p is the
load per unit area on the structure and σ is a second order tensor containing the
membrane stresses and the normal shear forces associated with bending. The ∇·
is the divergence described in Section 4.3. In the case of a structure which is not
static we can include inertia forces using D’Alembert’s principle.

If the members are elastic, or if they are plastic and we have sufficient 

knowledge of past deformation, we can write
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geometric stiffness. The geometric stiffness is so called because it only depends
upon the geometry and the state of stress, not the elastic properties, except in so
much as they may influence the state of stress.

3 The equations of static equilibrium of shell structures

The concept of virtual work is much more difficult to grasp for shell structures
than for the pin jointed structures described in section 2 because the associated
mathematics involving the differential geometry of a deforming surface is complicated.
Therefore, rather than leave the main results until after they have been proved, we
will quote them now as an incentive to follow their derivation.
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This is a vector equation corresponding to equilibrium in 3 directions, that is the 2
directions tangential to the surface and the normal direction. The vector p is the
load per unit area on the structure and σ is a second order tensor containing the
membrane stresses and the normal shear forces associated with bending. The ∇·
is the divergence described in Section 4.3. In the case of a structure which is not
static we can include inertia forces using D’Alembert’s principle.
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quantities and quantities such as force and stress. There are many books and papers
on shell theory, for example Timoshenko and Woinowsk-Krieger (1959), Flügge
(1973), Calladine (1982) and Axelrad and Emmerling (1988), but in our view the
notation in Green and Zerna is to be preferred because it has the added advantage
that it is essentially as that used by Einstein for the general theory of relativity
(Dirac, 1975), where, of course, the stress-energy tensor causes the curvature of
space-time so that stress is essentially a geometric concept with principal values
equal to the density and the 3 principal stresses.

The references cited in the previous paragraph could be loosely described as ‘engi-
neering’ texts. But there are numerous other relevant references in mathematics,
architectural geometry and computer graphics including Kupferman et al. (2017),
Vouga et al. (2012), Yang et al. (2011), Jiang et al. (2015) and Diamanti et al.
(2014).

2 The application of virtual work to pin jointed space structures

Before considering shell structures let us examine a simpler case, that of pin jointed
space structures. This enables us to understand the fundamental idea behind the
application of virtual work. One could imagine a shell, or even a 3 dimensional
continuum, as being made up of a very fine structure of pin ended members, and
indeed this is done in the numerical methods, peridynamics (Silling and Lehoucq,
2010) and smoothed particle hydrodynamics (Monaghan, 2012). At the molecular
level the assumptions of continuum mechanics break down, so that a pin jointed
framework is theoretically just as realistic as a continuum.

The length Li of the member with ends at nodes numbered ai and bi is given by
Pythagoras’ theorem,

L2
i = (xai −xbi) · (xai −xbi) (1)

where x j is the position vector of node j.

Differentiating with respect to time we obtain

2LiL̇i = 2(xai −xbi) · (ẋai − ẋbi)

so that

L̇i =
(xai −xbi) · (ẋai − ẋbi)

Li
. (2)

The virtual work equation is

n

∑
j=0

(p j · ẋ j) =
m

∑
i=0

(
TiL̇i

)
(3)

where the members are numbered from 0 to m and the nodes are numbered from 0
to n. p j is the load applied to node j and Ti is the tension in member i.

The virtual work equation is
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Therefore using (2),

n

∑
j=0

(p j · ẋ j) =
m

∑
i=0

(
Ti

Li
(xai −xbi) · (ẋai − ẋbi)

)
.

But this applies for any virtual set of nodal velocities. So if we imagine that all the
nodes are stationary except for node j

p j · ẋ j =
m

∑
i=0

(
Ti

Li
(xai −xbi) ·

(
δ jai ẋ j −δ jbi ẋ j

))

in which

δ jai = 0 if j �= ai

= 1 if j = ai .
(4)

Therefore since the direction of ẋ j is arbitrary,

p j =
m

∑
i=0

(
Ti

Li

(
δ jai −δ jbi

)
(xai −xbi)

)
(5)

which are the equilibrium equations that we could have obtained by resolving forces at
the nodes. We do not actually need the δ jai and δ jbi in a numerical implementation
since we sum over all the members adding forces to the nodes as appropriate.

Thus any 2 of equations (2), (3) or (5) imply the third.

Equation (3) looks like a statement of conservation of energy, rate of work being
done by loads equal rate of work being absorbed by members, but there is no
suggestion the the deformation or the forces are ‘real’, provided that ẋ j and L̇i are
geometrically compatible and p j and Ti are in equilibrium with each other.

Note there is absolutely no assumption that the displacements are small, although
we do have to consider velocities or increments of displacement. Li is the current
length of a member, which might be stretched to many times its original length.
Similarly x j are the current positions and the initial member lengths and positions
do not appear at all. Indeed there may be no meaningful concept of initial lengths
and positions since we may have to move nodes and stretch or compress members
to fit the structure together, possibly deforming the members permanently.

There is also no assumption about material properties, the members do not have to
be elastic and we have made no assumption about the relationship between Ti and
Li.

2.1 The stiffness matrix

We are not concerned with stiffness in this paper. However, since there is a great
deal of confusion attached to the subject, let us differentiate (5) with respect to
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m

∑
i=0

(
Ti

Li
(xai −xbi) · (ẋai − ẋbi)
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of displacement. Li is the current length of a member, which might be 
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time,

ṗ j =
m

∑
i=0

(
d
dt

(
Ti

Li

)(
δ jai −δ jbi

)
(xai −xbi)

)
+

m

∑
i=0

(
Ti

Li

(
δ jai −δ jbi

)
(ẋai − ẋbi)

)
.

(6)

If the members are elastic, or if they are plastic and we have sufficient knowledge of
past deformation, we can write

d
dt

(
Ti

Li

)
= si

L̇i

Li
= si

d
dt

(logLi) (7)

where the member stiffness si may itself be a function of the current Li.

Then

ṗ j =
m

∑
i=0

(
si

L̇i

Li

(
δ jai −δ jbi

)
(xai −xbi)

)
+

m

∑
i=0

(
Ti

Li

(
δ jai −δ jbi

)
(ẋai − ẋbi)

)

=
m

∑
i=0

((
δ jai −δ jbi

)(
si
(xai −xbi)(xai −xbi)

L2
i

+
Ti

Li
I
)
· (ẋai − ẋbi)

) (8)

in which I is the unit tensor in 3 dimensional space.

The term containing si is the elastic stiffness and the term containing
Ti

Li
is the

geometric stiffness. The geometric stiffness is so called because it only depends
upon the geometry and the state of stress, not the elastic properties, except in so
much as they may influence the state of stress.

3 The equations of static equilibrium of shell structures

The concept of virtual work is much more difficult to grasp for shell structures
than for the pin jointed structures described in section 2 because the associated
mathematics involving the differential geometry of a deforming surface is complicated.
Therefore, rather than leave the main results until after they have been proved, we
will quote them now as an incentive to follow their derivation.

The equation of equilibrium of forces is

∇ ·σ+p = 0 . (9)

This is a vector equation corresponding to equilibrium in 3 directions, that is the 2
directions tangential to the surface and the normal direction. The vector p is the
load per unit area on the structure and σ is a second order tensor containing the
membrane stresses and the normal shear forces associated with bending. The ∇·
is the divergence described in Section 4.3. In the case of a structure which is not
static we can include inertia forces using D’Alembert’s principle.
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(ẋai − ẋbi)
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directions tangential to the surface and the normal direction. The vector p is the
load per unit area on the structure and σ is a second order tensor containing the
membrane stresses and the normal shear forces associated with bending. The ∇·
is the divergence described in Section 4.3. In the case of a structure which is not
static we can include inertia forces using D’Alembert’s principle.

 is the geometric stiffness. The geometric stiffness is so called 

because it only depends upon the geometry and the state of stress, not 

the elastic properties, except in so much as they may influence the state 

of stress.



 292 AAG2018  293

3. The equations of static equilibrium of 
shell structures 
The concept of virtual work is much more difficult to grasp for shell 

structures than for the pin jointed structures described in section 2 

because the associated mathematics involving the differential geometry 

of a deforming surface is complicated. Therefore, rather than leave the 

main results until after they have been proved, we will quote them now 

as an incentive to follow their derivation.

The equation of equilibrium of forces is

The use of virtual work for the formfinding of fabric, shell and gridshell structures

time,
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The form of eq. (9) is essentially the same as eq. (5) and indeed much of the theory
of peridynamics and smoothed particle hydrodynamics is to establish link tensions
which will have the same effect as stresses in a solid or a fluid.

Equation (9) is identical to that for a 3 dimensional continuum and in relativity
theory ∇ ·σ= 0 is the equation for the conservation of momentum and mass-energy.

Figure 1: Mannheim Multihalle, Germany 1974. Frei Otto, Carlfried Mutschler and Winfried
Langner, Ove Arup and Partners

The equation of equilibrium of moments is

(σ+∇ ·m+ c) = (σ+∇ ·m+ c)T (10)

where the superscript T means the transpose. Thus we are saying that the second
order tensor (σ+∇ ·m+ c) is symmetric, which is equivalent to the resultant
moment about 3 directions being zero, again 2 directions tangent to the surface
and the surface normal. m is the third order tensor containing the moments in the
surface, both ‘ordinary’ bending and twisting moments about axes in the plane of
the surface and ‘geodesic’ bending moments about the normal which are relevant
to gridshell structures with continuous laths, like the Mannheim Multihalle gridshell
(fig. 1) or a kitchen sieve made from a woven wire mesh. Both the Mannheim
Multihalle and a sieve have a fine grid, making it appropriate to treat them as
continua. The second order tensor c is the loading couple per unit area, which
is zero in almost all practical applications, and again we can include the effect of
acceleration using D’Alembert’s principle.

To our knowledge this is the first time that this concept of geodesic moments has
been introduced.
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4.1 The base vectors and the first fundamental form 

We first need to define the geometric quantities of a stationary surface 

before we can examine how they vary as the surface deforms. The 

contents of this section will be familiar to some readers, but we need 
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and the surface normal. m is the third order tensor containing the moments in the
surface, both ‘ordinary’ bending and twisting moments about axes in the plane of
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Multihalle and a sieve have a fine grid, making it appropriate to treat them as
continua. The second order tensor c is the loading couple per unit area, which
is zero in almost all practical applications, and again we can include the effect of
acceleration using D’Alembert’s principle.

To our knowledge this is the first time that this concept of geodesic moments has
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to define all our terms so that we can differentiate them with respect to 

time in Section 5 where we consider a deforming surface.

Imagine a surface defined by the curvilinear coordinates, θ1 and θ 2. 

The position vector of a typical point on the surface and its Cartesian 

coordinates are given by
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4 Differential geometry of a stationary surface

4.1 The base vectors and the first fundamental form

We first need to define the geometric quantities of a stationary surface before we
can examine how they vary as the surface deforms. The contents of this section
will be familiar to some readers, but we need to define all our terms so that we can
differentiate them with respect to time in Section 5 where we consider a deforming
surface.

Imagine a surface defined by the curvilinear coordinates, θ 1 and θ 2. The position
vector of a typical point on the surface and its Cartesian coordinates are given by

r
(
θ 1,θ 2)= x

(
θ 1,θ 2) i+ y

(
θ 1,θ 2) j+ z

(
θ 1,θ 2)k (11)

in which i, j and k are unit base vectors in the direction of the Cartesian axes, x, y
and z. We use the surface coordinates or parameters θ 1 and θ 2 with superscripts
to replace the more usual u and v so that we can use the tensor notation, which
is indispensable if one is to consider both geometry and structural concepts such
as stress. Following the notation in Green and Zerna (1968), the covariant base
vectors, aα , in which α is equal to 1 or 2, are given by

aα =
∂r

∂θ α = r,α . (12)

A comma will be used to denote partial differentiation. a1 is tangential to a curve
θ 2 = constant on the surface and a2 is tangential to a curve θ 1 = constant. In
general neither a1 nor a2 will be unit vectors, and they will not be perpendicular to
each other.

The square of the distance between two adjacent points on the surface is equal to

2

∑
α=1

2

∑
β=1

aαβ dθ αdθ β = aαβ dθ αdθ β

aαβ = aβα = aα ·aβ

(13)

in which we have used the Einstein summation convention for the implied summation
for repeated subscripts and superscripts. aαβ are the covariant components of the
metric tensor, also known as the coefficients of the first fundamental form. Eisenhart
(1947) uses gαβ and Struik (1961) uses E, F and G.

The unit normal is

n =
a1 ×a2

|a1 ×a2|
(14)

and here our notation differs from Green and Zerna who use a3. We will also have

in which i, j and k are unit base vectors in the direction of the Cartesian 

axes, 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧. We use the surface coordinates or parameters θ1 and 

θ 2 with superscripts to replace the more usual 𝑢𝑢 and 
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which can be extended to any number of dots.

Let us now imagine that we have a vector field on a surface, that is a first order
tensor field,

v = vαaα + vn (30)

with components tangential to the surface, vα , and normal to the surface, v. We
will define the gradient of this vector field as the second order tensor,

∇v = aβ v,β = aβ (vαaα + vn),β

= aβ
((

∇β vα − vbα
β

)
aα +

(
vαbαβ + v,β

)
n
) (31)

in which the covariant derivative,

∇β vα = vα
,β + vηΓα

ηβ . (32)

The covariant derivative of the components of the metric tensor and of the permu-
tation tensor are all zero and

∇n =−b . (33)

The divergence of the vector v,

∇ ·v = aα ·v,α = ∇αvα − vbα
α (34)

in which

∇αvα = vα
,α + vλ Γα

λα =
(vα√a),α√

a
. (35)

4.4 The divergence theorem on a surface

This last result enables us to prove the divergence theorem on a surface for a vector
with no normal component, v = vαaα ,

∫

A

∇ ·vdA =
∫

A

∇αvα√adθ 1dθ 2 =
∫

A

(
vα√a

)
,αdθ 1dθ 2

=
∫

∂A

vαεαβ dθ β =
∫

∂A

(dr×n) ·v
(36)

in which ∂A is the boundary of the surface A. This result is central to the application
of virtual work to surface structures.
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and here our notation differs from Green and Zerna who use a3. We will 

also have occasion to use the contravariant base vectors, aα , defined by
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occasion to use the contravariant base vectors, aα , defined by

aα ·aβ = δ α
β = 0 if α �= β

= 1 if α = β
aα ·n = 0 .

(15)

a1 lies in the tangent plane to the surface perpendicular to a curve θ 1 = constant
and its magnitude is such that a1 ·a1 = 1, and similarly for a2.

Using aαβ and
aαβ = aβα = aα ·aβ (16)

we can raise and lower indices using equations such as

aα = aαβ aβ

aα = aαβ aβ

qαβ = aαλ qλ
· β

in which the dot in qλ
· β is used maintain the order of indices. If the second order

tensor q is symmetric then qαβ = qβα and we can dispense with the dot and write
qλ

β .

The components of the permutation tensor,

ελ µ =−εµλ

ε11 = 0, ε12 =−ε21 =
√

a, ε22 = 0
(17)

in which
a = |a1 ×a2|2 = a11a22 − (a12)

2 (18)

are used to perform the vector products,

aα ×aβ = εαβ n

n×aα = εαβ aβ .
(19)

a is not a scalar since it is a property of the coordinate system.

4.2 The second fundamental form and the Christoffel symbols

The components of the normal curvature tensor, or coefficients of the second
fundamental form, are

bαβ = bβα = aα,β ·n =
∂ 2r

∂θ α∂θ β ·n =−aα ·n,β . (20)

Eisenhart (1947) uses dαβ and Struik (1961) uses e, f and g. bαβ , together with
aαβ , contain all the information about the normal curvature and twist of the surface,
including the principal curvatures and their directions. The Gaussian curvature,

K =
b11b22 − (b12)

2

a11a22 − (a12)
2 (21)

a1 lies in the tangent plane to the surface perpendicular to a curve θ1 = 

constant and its magnitude is such that a1 · a1 = 1, and similarly for a2.

Using 𝑎𝑎αβ and
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= 1 if α = β
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we can raise and lower indices using equations such as

aα = aαβ aβ

aα = aαβ aβ

qαβ = aαλ qλ
· β

in which the dot in qλ
· β is used maintain the order of indices. If the second order

tensor q is symmetric then qαβ = qβα and we can dispense with the dot and write
qλ

β .

The components of the permutation tensor,

ελ µ =−εµλ

ε11 = 0, ε12 =−ε21 =
√

a, ε22 = 0
(17)

in which
a = |a1 ×a2|2 = a11a22 − (a12)

2 (18)

are used to perform the vector products,

aα ×aβ = εαβ n

n×aα = εαβ aβ .
(19)

a is not a scalar since it is a property of the coordinate system.

4.2 The second fundamental form and the Christoffel symbols

The components of the normal curvature tensor, or coefficients of the second
fundamental form, are
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to define all our terms so that we can differentiate them with respect to 

time in Section 5 where we consider a deforming surface.

Imagine a surface defined by the curvilinear coordinates, θ1 and θ 2. 

The position vector of a typical point on the surface and its Cartesian 

coordinates are given by
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4 Differential geometry of a stationary surface

4.1 The base vectors and the first fundamental form

We first need to define the geometric quantities of a stationary surface before we
can examine how they vary as the surface deforms. The contents of this section
will be familiar to some readers, but we need to define all our terms so that we can
differentiate them with respect to time in Section 5 where we consider a deforming
surface.

Imagine a surface defined by the curvilinear coordinates, θ 1 and θ 2. The position
vector of a typical point on the surface and its Cartesian coordinates are given by

r
(
θ 1,θ 2)= x

(
θ 1,θ 2) i+ y

(
θ 1,θ 2) j+ z

(
θ 1,θ 2)k (11)

in which i, j and k are unit base vectors in the direction of the Cartesian axes, x, y
and z. We use the surface coordinates or parameters θ 1 and θ 2 with superscripts
to replace the more usual u and v so that we can use the tensor notation, which
is indispensable if one is to consider both geometry and structural concepts such
as stress. Following the notation in Green and Zerna (1968), the covariant base
vectors, aα , in which α is equal to 1 or 2, are given by

aα =
∂r

∂θ α = r,α . (12)

A comma will be used to denote partial differentiation. a1 is tangential to a curve
θ 2 = constant on the surface and a2 is tangential to a curve θ 1 = constant. In
general neither a1 nor a2 will be unit vectors, and they will not be perpendicular to
each other.

The square of the distance between two adjacent points on the surface is equal to

2

∑
α=1

2

∑
β=1

aαβ dθ αdθ β = aαβ dθ αdθ β

aαβ = aβα = aα ·aβ

(13)

in which we have used the Einstein summation convention for the implied summation
for repeated subscripts and superscripts. aαβ are the covariant components of the
metric tensor, also known as the coefficients of the first fundamental form. Eisenhart
(1947) uses gαβ and Struik (1961) uses E, F and G.

The unit normal is

n =
a1 ×a2

|a1 ×a2|
(14)

and here our notation differs from Green and Zerna who use a3. We will also have

in which i, j and k are unit base vectors in the direction of the Cartesian 

axes, 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧. We use the surface coordinates or parameters θ1 and 

θ 2 with superscripts to replace the more usual 𝑢𝑢 and 
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which can be extended to any number of dots.

Let us now imagine that we have a vector field on a surface, that is a first order
tensor field,

v = vαaα + vn (30)

with components tangential to the surface, vα , and normal to the surface, v. We
will define the gradient of this vector field as the second order tensor,

∇v = aβ v,β = aβ (vαaα + vn),β

= aβ
((

∇β vα − vbα
β

)
aα +

(
vαbαβ + v,β

)
n
) (31)

in which the covariant derivative,

∇β vα = vα
,β + vηΓα

ηβ . (32)

The covariant derivative of the components of the metric tensor and of the permu-
tation tensor are all zero and

∇n =−b . (33)

The divergence of the vector v,

∇ ·v = aα ·v,α = ∇αvα − vbα
α (34)

in which

∇αvα = vα
,α + vλ Γα

λα =
(vα√a),α√

a
. (35)

4.4 The divergence theorem on a surface

This last result enables us to prove the divergence theorem on a surface for a vector
with no normal component, v = vαaα ,

∫

A

∇ ·vdA =
∫

A

∇αvα√adθ 1dθ 2 =
∫

A

(
vα√a

)
,αdθ 1dθ 2

=
∫

∂A

vαεαβ dθ β =
∫

∂A

(dr×n) ·v
(36)

in which ∂A is the boundary of the surface A. This result is central to the application
of virtual work to surface structures.
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and here our notation differs from Green and Zerna who use a3. We will 

also have occasion to use the contravariant base vectors, aα , defined by
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occasion to use the contravariant base vectors, aα , defined by

aα ·aβ = δ α
β = 0 if α �= β

= 1 if α = β
aα ·n = 0 .

(15)

a1 lies in the tangent plane to the surface perpendicular to a curve θ 1 = constant
and its magnitude is such that a1 ·a1 = 1, and similarly for a2.

Using aαβ and
aαβ = aβα = aα ·aβ (16)

we can raise and lower indices using equations such as

aα = aαβ aβ

aα = aαβ aβ

qαβ = aαλ qλ
· β

in which the dot in qλ
· β is used maintain the order of indices. If the second order

tensor q is symmetric then qαβ = qβα and we can dispense with the dot and write
qλ

β .

The components of the permutation tensor,

ελ µ =−εµλ

ε11 = 0, ε12 =−ε21 =
√

a, ε22 = 0
(17)

in which
a = |a1 ×a2|2 = a11a22 − (a12)

2 (18)

are used to perform the vector products,

aα ×aβ = εαβ n

n×aα = εαβ aβ .
(19)

a is not a scalar since it is a property of the coordinate system.

4.2 The second fundamental form and the Christoffel symbols

The components of the normal curvature tensor, or coefficients of the second
fundamental form, are

bαβ = bβα = aα,β ·n =
∂ 2r

∂θ α∂θ β ·n =−aα ·n,β . (20)

Eisenhart (1947) uses dαβ and Struik (1961) uses e, f and g. bαβ , together with
aαβ , contain all the information about the normal curvature and twist of the surface,
including the principal curvatures and their directions. The Gaussian curvature,

K =
b11b22 − (b12)

2

a11a22 − (a12)
2 (21)

a1 lies in the tangent plane to the surface perpendicular to a curve θ1 = 

constant and its magnitude is such that a1 · a1 = 1, and similarly for a2.

Using 𝑎𝑎αβ and
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we can raise and lower indices using equations such as
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in which the dot in qλ
· β is used maintain the order of indices. If the second order

tensor q is symmetric then qαβ = qβα and we can dispense with the dot and write
qλ
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in which
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is equal to the product of the principal curvatures and the mean curva-

ture,
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is equal to the product of the principal curvatures and the mean curvature,

H =
1
2

aαβ bαβ =
1
2

bα
α (22)

is the average of the principal curvatures.

bαβ give the component of aα,β normal to the surface and the Christoffel symbols,

Γχ
αβ = aα,β ·aχ =

1
2

aχη (aηα,β +aβη ,α −aαβ ,η
)

(23)

give the components of aα,β tangent to the surface. Note that the Christoffel
symbols are not the components of a tensor because they represent properties of
the coordinate system rather than the surface itself.

The fundamental theorem of surface theory states that the tensor components aαβ
and bαβ define the shape of a surface, but not its position and orientation in space.
aαβ and bαβ are not independent since they come from differentiating 3 Cartesian
coordinates with respect to the surface coordinates. Writing

aα,β χ =
(

bαβ n+Γλ
αβ aλ

)
,χ
= aα,χβ =

(
bαχn+Γλ

αχaλ

)
,β

(24)

gives the 3 conditions that the surface ‘fits together’. These are known as Gauss’s
theorema egregium and the Codazzi-Mainardi equations,

∇λ bαβ = ∇αbλβ (25)

in which the covariant derivative,

∇λ bαβ = bαβ ,λ −bηβ Γη
αλ −bαηΓη

βλ . (26)

4.3 Component free notation and the gradient of a tensor

It is rather unsatisfactory to only be able to talk about the components of a tensor,
rather than the tensor itself, and we can write the second order normal curvature
tensor, b, as

b = bαβ aαaβ = bβ
αaαaβ = bαβ aαaβ (27)

in which the product aαaβ , without a dot or a cross is the tensor product, or outer
product, sometimes written with a ⊗, defined by

(de) ·g = d(e ·g)
g · (de) = (g ·d)e

(28)

where d, e and g are any vectors. We shall also use the double dot notation,

(de) · ·(gh) = (d ·g)(e ·h)
(cde) · · · (ghpq) = (c ·g)(d ·h)(e ·p)q

(29)

is the average of the principal curvatures.

𝑏𝑏αβ give the component of aα,β , normal to the surface and the Chris-

toffel symbols,
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(29)

in which the product aα aβ , without a dot or a cross is the tensor product, 

or outer product, sometimes written with a ⊗, defined by
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is equal to the product of the principal curvatures and the mean curvature,

H =
1
2

aαβ bαβ =
1
2

bα
α (22)

is the average of the principal curvatures.

bαβ give the component of aα,β normal to the surface and the Christoffel symbols,

Γχ
αβ = aα,β ·aχ =

1
2

aχη (aηα,β +aβη ,α −aαβ ,η
)

(23)

give the components of aα,β tangent to the surface. Note that the Christoffel
symbols are not the components of a tensor because they represent properties of
the coordinate system rather than the surface itself.

The fundamental theorem of surface theory states that the tensor components aαβ
and bαβ define the shape of a surface, but not its position and orientation in space.
aαβ and bαβ are not independent since they come from differentiating 3 Cartesian
coordinates with respect to the surface coordinates. Writing

aα,β χ =
(

bαβ n+Γλ
αβ aλ

)
,χ
= aα,χβ =

(
bαχn+Γλ

αχaλ

)
,β

(24)

gives the 3 conditions that the surface ‘fits together’. These are known as Gauss’s
theorema egregium and the Codazzi-Mainardi equations,

∇λ bαβ = ∇αbλβ (25)

in which the covariant derivative,

∇λ bαβ = bαβ ,λ −bηβ Γη
αλ −bαηΓη

βλ . (26)

4.3 Component free notation and the gradient of a tensor

It is rather unsatisfactory to only be able to talk about the components of a tensor,
rather than the tensor itself, and we can write the second order normal curvature
tensor, b, as

b = bαβ aαaβ = bβ
αaαaβ = bαβ aαaβ (27)

in which the product aαaβ , without a dot or a cross is the tensor product, or outer
product, sometimes written with a ⊗, defined by

(de) ·g = d(e ·g)
g · (de) = (g ·d)e
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where d, e and g are any vectors. We shall also use the double dot notation,
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which can be extended to any number of dots.

Let us now imagine that we have a vector field on a surface, that is a 

first order tensor field,
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which can be extended to any number of dots.

Let us now imagine that we have a vector field on a surface, that is a first order
tensor field,

v = vαaα + vn (30)

with components tangential to the surface, vα , and normal to the surface, v. We
will define the gradient of this vector field as the second order tensor,

∇v = aβ v,β = aβ (vαaα + vn),β

= aβ
((

∇β vα − vbα
β

)
aα +

(
vαbαβ + v,β

)
n
) (31)

in which the covariant derivative,

∇β vα = vα
,β + vηΓα

ηβ . (32)

The covariant derivative of the components of the metric tensor and of the permu-
tation tensor are all zero and

∇n =−b . (33)

The divergence of the vector v,

∇ ·v = aα ·v,α = ∇αvα − vbα
α (34)

in which

∇αvα = vα
,α + vλ Γα

λα =
(vα√a),α√

a
. (35)

4.4 The divergence theorem on a surface

This last result enables us to prove the divergence theorem on a surface for a vector
with no normal component, v = vαaα ,

∫

A

∇ ·vdA =
∫

A

∇αvα√adθ 1dθ 2 =
∫

A

(
vα√a

)
,αdθ 1dθ 2

=
∫

∂A

vαεαβ dθ β =
∫

∂A

(dr×n) ·v
(36)

in which ∂A is the boundary of the surface A. This result is central to the application
of virtual work to surface structures.
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4.2 The second fundamental form and the Christoffel 
symbols 

The components of the normal curvature tensor, or coefficients of the 

second fundamental form, are
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occasion to use the contravariant base vectors, aα , defined by

aα ·aβ = δ α
β = 0 if α �= β

= 1 if α = β
aα ·n = 0 .

(15)

a1 lies in the tangent plane to the surface perpendicular to a curve θ 1 = constant
and its magnitude is such that a1 ·a1 = 1, and similarly for a2.

Using aαβ and
aαβ = aβα = aα ·aβ (16)

we can raise and lower indices using equations such as

aα = aαβ aβ

aα = aαβ aβ

qαβ = aαλ qλ
· β

in which the dot in qλ
· β is used maintain the order of indices. If the second order

tensor q is symmetric then qαβ = qβα and we can dispense with the dot and write
qλ

β .

The components of the permutation tensor,

ελ µ =−εµλ

ε11 = 0, ε12 =−ε21 =
√

a, ε22 = 0
(17)

in which
a = |a1 ×a2|2 = a11a22 − (a12)

2 (18)

are used to perform the vector products,

aα ×aβ = εαβ n

n×aα = εαβ aβ .
(19)

a is not a scalar since it is a property of the coordinate system.

4.2 The second fundamental form and the Christoffel symbols

The components of the normal curvature tensor, or coefficients of the second
fundamental form, are

bαβ = bβα = aα,β ·n =
∂ 2r

∂θ α∂θ β ·n =−aα ·n,β . (20)

Eisenhart (1947) uses dαβ and Struik (1961) uses e, f and g. bαβ , together with
aαβ , contain all the information about the normal curvature and twist of the surface,
including the principal curvatures and their directions. The Gaussian curvature,

K =
b11b22 − (b12)

2

a11a22 − (a12)
2 (21)

Eisenhart (1947) uses 𝑑𝑑αβ and Struik (1961) uses 𝑒𝑒, 𝑓𝑓 and 𝑔𝑔. 𝑏𝑏αβ , together 
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4.2 The second fundamental form and the Christoffel symbols

The components of the normal curvature tensor, or coefficients of the second
fundamental form, are

bαβ = bβα = aα,β ·n =
∂ 2r

∂θ α∂θ β ·n =−aα ·n,β . (20)

Eisenhart (1947) uses dαβ and Struik (1961) uses e, f and g. bαβ , together with
aαβ , contain all the information about the normal curvature and twist of the surface,
including the principal curvatures and their directions. The Gaussian curvature,

K =
b11b22 − (b12)

2

a11a22 − (a12)
2 (21)

is equal to the product of the principal curvatures and the mean curva-

ture,
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is equal to the product of the principal curvatures and the mean curvature,

H =
1
2

aαβ bαβ =
1
2

bα
α (22)

is the average of the principal curvatures.

bαβ give the component of aα,β normal to the surface and the Christoffel symbols,

Γχ
αβ = aα,β ·aχ =

1
2

aχη (aηα,β +aβη ,α −aαβ ,η
)

(23)

give the components of aα,β tangent to the surface. Note that the Christoffel
symbols are not the components of a tensor because they represent properties of
the coordinate system rather than the surface itself.

The fundamental theorem of surface theory states that the tensor components aαβ
and bαβ define the shape of a surface, but not its position and orientation in space.
aαβ and bαβ are not independent since they come from differentiating 3 Cartesian
coordinates with respect to the surface coordinates. Writing

aα,β χ =
(

bαβ n+Γλ
αβ aλ

)
,χ
= aα,χβ =

(
bαχn+Γλ

αχaλ

)
,β

(24)

gives the 3 conditions that the surface ‘fits together’. These are known as Gauss’s
theorema egregium and the Codazzi-Mainardi equations,

∇λ bαβ = ∇αbλβ (25)

in which the covariant derivative,

∇λ bαβ = bαβ ,λ −bηβ Γη
αλ −bαηΓη

βλ . (26)

4.3 Component free notation and the gradient of a tensor

It is rather unsatisfactory to only be able to talk about the components of a tensor,
rather than the tensor itself, and we can write the second order normal curvature
tensor, b, as

b = bαβ aαaβ = bβ
αaαaβ = bαβ aαaβ (27)

in which the product aαaβ , without a dot or a cross is the tensor product, or outer
product, sometimes written with a ⊗, defined by

(de) ·g = d(e ·g)
g · (de) = (g ·d)e

(28)

where d, e and g are any vectors. We shall also use the double dot notation,

(de) · ·(gh) = (d ·g)(e ·h)
(cde) · · · (ghpq) = (c ·g)(d ·h)(e ·p)q

(29)

is the average of the principal curvatures.

𝑏𝑏αβ give the component of aα,β , normal to the surface and the Chris-

toffel symbols,
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aχη (aηα,β +aβη ,α −aαβ ,η
)

(23)

give the components of aα,β tangent to the surface. Note that the Christoffel
symbols are not the components of a tensor because they represent properties of
the coordinate system rather than the surface itself.

The fundamental theorem of surface theory states that the tensor components aαβ
and bαβ define the shape of a surface, but not its position and orientation in space.
aαβ and bαβ are not independent since they come from differentiating 3 Cartesian
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gives the 3 conditions that the surface ‘fits together’. These are known as Gauss’s
theorema egregium and the Codazzi-Mainardi equations,

∇λ bαβ = ∇αbλβ (25)

in which the covariant derivative,
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βλ . (26)
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It is rather unsatisfactory to only be able to talk about the components of a tensor,
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Let us now imagine that we have a vector field on a surface, that is a 

first order tensor field,
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which can be extended to any number of dots.

Let us now imagine that we have a vector field on a surface, that is a first order
tensor field,

v = vαaα + vn (30)

with components tangential to the surface, vα , and normal to the surface, v. We
will define the gradient of this vector field as the second order tensor,

∇v = aβ v,β = aβ (vαaα + vn),β

= aβ
((

∇β vα − vbα
β

)
aα +

(
vαbαβ + v,β

)
n
) (31)

in which the covariant derivative,

∇β vα = vα
,β + vηΓα

ηβ . (32)

The covariant derivative of the components of the metric tensor and of the permu-
tation tensor are all zero and

∇n =−b . (33)

The divergence of the vector v,

∇ ·v = aα ·v,α = ∇αvα − vbα
α (34)

in which

∇αvα = vα
,α + vλ Γα

λα =
(vα√a),α√

a
. (35)

4.4 The divergence theorem on a surface

This last result enables us to prove the divergence theorem on a surface for a vector
with no normal component, v = vαaα ,

∫

A

∇ ·vdA =
∫

A

∇αvα√adθ 1dθ 2 =
∫

A

(
vα√a

)
,αdθ 1dθ 2

=
∫

∂A

vαεαβ dθ β =
∫

∂A

(dr×n) ·v
(36)

in which ∂A is the boundary of the surface A. This result is central to the application
of virtual work to surface structures.
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will define the gradient of this vector field as the second order tensor,

∇v = aβ v,β = aβ (vαaα + vn),β

= aβ
((

∇β vα − vbα
β

)
aα +

(
vαbαβ + v,β

)
n
) (31)

in which the covariant derivative,

∇β vα = vα
,β + vηΓα

ηβ . (32)

The covariant derivative of the components of the metric tensor and of the permu-
tation tensor are all zero and

∇n =−b . (33)

The divergence of the vector v,

∇ ·v = aα ·v,α = ∇αvα − vbα
α (34)

in which

∇αvα = vα
,α + vλ Γα

λα =
(vα√a),α√

a
. (35)

4.4 The divergence theorem on a surface

This last result enables us to prove the divergence theorem on a surface for a vector
with no normal component, v = vαaα ,

∫

A

∇ ·vdA =
∫

A

∇αvα√adθ 1dθ 2 =
∫

A

(
vα√a

)
,αdθ 1dθ 2

=
∫

∂A

vαεαβ dθ β =
∫

∂A

(dr×n) ·v
(36)

in which ∂A is the boundary of the surface A. This result is central to the application
of virtual work to surface structures.in which ∂A is the boundary of the surface A. This result is central to the 
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5. Deformation of a surface 

5.1 Velocity 

Now let us imagine a moving and deforming surface defined by the cur-

vilinear coordinates, θ1 and θ 2, and time 𝑡𝑡. The position vector of a typical 
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The velocity vector is

u = uµaµ +un =
∂r
∂ t

. (38)

We imagine that the coordinates move with the surface, like the laths of a gridshell.

5.2 Strain rate and angular velocity

The gradient of the velocity is

∇u = aλ u,λ =
(
∇λ uµ −bλ µu

)
aλ aµ +

(
uµbµ

λ +∇λ u
)

aλ n

=
(
γλ µ +ωελ µ

)
aλ aµ + ελ µωµaλ n

(39)

in which the symmetric strain rate tensor,

γ= γT =
1
2

(
(∇u−∇u ·nn)+(∇u−∇u ·nn)T

)

= γλ µaλ aµ
(40)

and the anti-symmetric angular velocity tensor, or vorticity tensor,

ω=−ωT =
1
2

(
(∇u−n∇u ·n)− (∇u−n∇u ·n)T

)

= ωελ µaλ aµ + ελ µωµ
(

aλ n−naλ
)
.

(41)

ω is defined by only 3 quantities, ω , ω1 and ω2, which could be considered to be
the components of a vector.

We can write

∇u = γ+ω−nn ·ω (42)
u,λ = aλ · (γ+ω) (43)
∂n
∂ t

= n · (γ+ω) = n ·ω (44)

and we have the results
∂aαβ

∂ t
= u,α ·aβ +aα ·u,β = aα ·

(
∇u+(∇u)T

)
·aβ = 2γαβ (45)

∂aαβ

∂ t
=−2γαβ (46)

1√
a

∂
√

a
∂ t

= aαβ γαβ . (47)
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Let us now imagine that we have a vector field on a surface, that is a first order
tensor field,

v = vαaα + vn (30)

with components tangential to the surface, vα , and normal to the surface, v. We
will define the gradient of this vector field as the second order tensor,

∇v = aβ v,β = aβ (vαaα + vn),β

= aβ
((

∇β vα − vbα
β

)
aα +

(
vαbαβ + v,β

)
n
) (31)

in which the covariant derivative,

∇β vα = vα
,β + vηΓα

ηβ . (32)

The covariant derivative of the components of the metric tensor and of the permu-
tation tensor are all zero and

∇n =−b . (33)

The divergence of the vector v,

∇ ·v = aα ·v,α = ∇αvα − vbα
α (34)

in which

∇αvα = vα
,α + vλ Γα

λα =
(vα√a),α√

a
. (35)

4.4 The divergence theorem on a surface

This last result enables us to prove the divergence theorem on a surface for a vector
with no normal component, v = vαaα ,

∫

A

∇ ·vdA =
∫

A

∇αvα√adθ 1dθ 2 =
∫

A

(
vα√a

)
,αdθ 1dθ 2

=
∫

∂A

vαεαβ dθ β =
∫

∂A

(dr×n) ·v
(36)

in which ∂A is the boundary of the surface A. This result is central to the application
of virtual work to surface structures.
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∇β vα = vα
,β + vηΓα

ηβ . (32)

The covariant derivative of the components of the metric tensor and of the permu-
tation tensor are all zero and

∇n =−b . (33)

The divergence of the vector v,

∇ ·v = aα ·v,α = ∇αvα − vbα
α (34)

in which

∇αvα = vα
,α + vλ Γα

λα =
(vα√a),α√

a
. (35)

4.4 The divergence theorem on a surface

This last result enables us to prove the divergence theorem on a surface for a vector
with no normal component, v = vαaα ,

∫

A

∇ ·vdA =
∫

A

∇αvα√adθ 1dθ 2 =
∫

A

(
vα√a

)
,αdθ 1dθ 2

=
∫

∂A

vαεαβ dθ β =
∫

∂A

(dr×n) ·v
(36)

in which ∂A is the boundary of the surface A. This result is central to the application
of virtual work to surface structures.
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5 Deformation of a surface

5.1 Velocity

Now let us imagine a moving and deforming surface defined by the curvilinear
coordinates, θ 1 and θ 2, and time t. The position vector of a typical point on the
surface is now given by

r
(
θ 1,θ 2, t

)
= x

(
θ 1,θ 2, t

)
i+ y

(
θ 1,θ 2, t

)
j+ z

(
θ 1,θ 2, t

)
k . (37)

The velocity vector is

u = uµaµ +un =
∂r
∂ t

. (38)

We imagine that the coordinates move with the surface, like the laths of a gridshell.

5.2 Strain rate and angular velocity

The gradient of the velocity is

∇u = aλ u,λ =
(
∇λ uµ −bλ µu

)
aλ aµ +

(
uµbµ

λ +∇λ u
)

aλ n

=
(
γλ µ +ωελ µ

)
aλ aµ + ελ µωµaλ n

(39)

in which the symmetric strain rate tensor,

γ= γT =
1
2

(
(∇u−∇u ·nn)+(∇u−∇u ·nn)T

)

= γλ µaλ aµ
(40)

and the anti-symmetric angular velocity tensor, or vorticity tensor,

ω=−ωT =
1
2

(
(∇u−n∇u ·n)− (∇u−n∇u ·n)T

)

= ωελ µaλ aµ + ελ µωµ
(

aλ n−naλ
)
.

(41)

ω is defined by only 3 quantities, ω , ω1 and ω2, which could be considered to be
the components of a vector.

We can write

∇u = γ+ω−nn ·ω (42)
u,λ = aλ · (γ+ω) (43)
∂n
∂ t

= n · (γ+ω) = n ·ω (44)

and we have the results
∂aαβ

∂ t
= u,α ·aβ +aα ·u,β = aα ·

(
∇u+(∇u)T

)
·aβ = 2γαβ (45)

∂aαβ

∂ t
=−2γαβ (46)

1√
a

∂
√

a
∂ t

= aαβ γαβ . (47)

The velocity vector is
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5.3 Rate of bending, or rate of change of normal and geodesic curvature

In order to find how the coefficients of the second fundamental form and the
Christoffel symbols vary with time we need

∂aα,β

∂ t
=

∂
∂ t

(
bαβ n+Γλ

αβ aλ

)

=
∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ +bαβ

∂n
∂ t

+Γλ
αβ u,λ

= u,αβ = aα ·
(

aλ u,λ

)
,β
−aα ·aλ

,β u,λ = aα ·
(

aλ u,λ

)
,β
+Γλ

αβ u,λ

=
(
aβ aα

)
· ·∇∇u+Γλ

αβ u,λ

(48)

and
(
aβ aα

)
· ·∇∇u =

(
aβ aα

)
· ·∇(γ +ω −nn ·ω)

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ n ·ω

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ

∂n
∂ t

(49)

which mean that

∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ =

(
aβ aα

)
· ·∇∇u−bαβ

∂n
∂ t

=
(
aβ aα

)
· ·∇(γ+ω) (50)

∂bαβ

∂ t
=
(
aβ aαn

)
· · ·∇(γ+ω) (51)

∂Γλ
αβ

∂ t
=
(

aβ aαaλ
)
· · ·∇(γ+ω) . (52)

Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the

somewhat surprising conclusion that
∂Γλ

αβ

∂ t
are the components of a tensor, even

though Γλ
αβ are not, although in the general theory of relativity the derivatives of

the Christoffel symbols lead to the components of the Riemann–Christoffel tensor.

Differentiating eq. (23) with respect to time,

∂Γλ
αβ

∂ t
=

1
2

∂aαβ

∂ t

(
aηα,β +aβη ,α −aαβ ,η

)
+

1
2

aλη
(

∂aβη ,α

∂ t
+

∂aηα,β

∂ t
−

∂aαβ ,η

∂ t

)

=−2γληaµηΓµ
αβ +aλη




∇β γηα + γχαΓχ
ηβ + γηχΓχ

αβ
+∇αγβη + γχηΓχ

αβ + γβ χΓχ
ηα

−∇ηγαβ − γχβ Γχ
αη − γαχΓχ

βη




= aλη (∇β γηα +∇αγβη −∇ηγαβ
)

(53)
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5.3 Rate of bending, or rate of change of normal and geodesic curvature

In order to find how the coefficients of the second fundamental form and the
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Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the

somewhat surprising conclusion that
∂Γλ

αβ

∂ t
are the components of a tensor, even

though Γλ
αβ are not, although in the general theory of relativity the derivatives of

the Christoffel symbols lead to the components of the Riemann–Christoffel tensor.
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Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
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though Γλ
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Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
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Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the
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though Γλ
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Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
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somewhat surprising conclusion that
∂Γλ

αβ

∂ t
are the components of a tensor, even

though Γλ
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 are indeed the components of a tensor. But 

note that the rate of change of the Christoffel symbols of the first kind, 
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which confirms that
∂Γλ

αβ

∂ t
are indeed the components of a tensor. But note that

the rate of change of the Christoffel symbols of the first kind,
∂Γαβλ

∂ t
, are not the

components of a tensor.

For future use we will combine the components of
∂bαβ

∂ t
and

∂Γλ
αβ

∂ t
into the

components of one third order tensor, β,

β= aαaβ
(

βαβ n+β ·
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β

λ aλ

)
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(
∂bαβ

∂ t
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∂Γλ
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= aαaβ (aαaβ
)
· ·∇(γ+ω)

(54)

which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)
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lines on the surface.
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and deforms is

W =
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a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
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We can stipulate that
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Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the
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which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
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6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)

,
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5.3 Rate of bending, or rate of change of normal and geodesic curvature

In order to find how the coefficients of the second fundamental form and the
Christoffel symbols vary with time we need
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Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the

somewhat surprising conclusion that
∂Γλ

αβ

∂ t
are the components of a tensor, even

though Γλ
αβ are not, although in the general theory of relativity the derivatives of

the Christoffel symbols lead to the components of the Riemann–Christoffel tensor.

Differentiating eq. (23) with respect to time,
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


= aλη (∇β γηα +∇αγβη −∇ηγαβ
)
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=
(
aβ aα

)
· ·∇(γ +ω)+bαβ n ·ω

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ

∂n
∂ t

(49)

which mean that

∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ =

(
aβ aα

)
· ·∇∇u−bαβ

∂n
∂ t
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(
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)
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∂bαβ

∂ t
=
(
aβ aαn

)
· · ·∇(γ+ω) (51)

∂Γλ
αβ

∂ t
=
(

aβ aαaλ
)
· · ·∇(γ+ω) . (52)

Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the

somewhat surprising conclusion that
∂Γλ

αβ

∂ t
are the components of a tensor, even

though Γλ
αβ are not, although in the general theory of relativity the derivatives of

the Christoffel symbols lead to the components of the Riemann–Christoffel tensor.

Differentiating eq. (23) with respect to time,

∂Γλ
αβ

∂ t
=

1
2

∂aαβ

∂ t

(
aηα,β +aβη ,α −aαβ ,η

)
+

1
2

aλη
(

∂aβη ,α

∂ t
+

∂aηα,β

∂ t
−

∂aαβ ,η

∂ t

)

=−2γληaµηΓµ
αβ +aλη




∇β γηα + γχαΓχ
ηβ + γηχΓχ

αβ
+∇αγβη + γχηΓχ

αβ + γβ χΓχ
ηα

−∇ηγαβ − γχβ Γχ
αη − γαχΓχ

βη




= aλη (∇β γηα +∇αγβη −∇ηγαβ
)

(53)
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5.3 Rate of bending, or rate of change of normal and geodesic curvature

In order to find how the coefficients of the second fundamental form and the
Christoffel symbols vary with time we need
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Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the

somewhat surprising conclusion that
∂Γλ

αβ

∂ t
are the components of a tensor, even

though Γλ
αβ are not, although in the general theory of relativity the derivatives of

the Christoffel symbols lead to the components of the Riemann–Christoffel tensor.

Differentiating eq. (23) with respect to time,
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= aλη (∇β γηα +∇αγβη −∇ηγαβ
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 are indeed the components of a tensor. But 

note that the rate of change of the Christoffel symbols of the first kind, 
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which confirms that
∂Γλ

αβ

∂ t
are indeed the components of a tensor. But note that

the rate of change of the Christoffel symbols of the first kind,
∂Γαβλ

∂ t
, are not the

components of a tensor.

For future use we will combine the components of
∂bαβ

∂ t
and

∂Γλ
αβ

∂ t
into the

components of one third order tensor, β,

β= aαaβ
(

βαβ n+β ·
α
·
β

λ aλ

)
= aαaβ

(
∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ

)

= aαaβ (aαaβ
)
· ·∇(γ+ω)

(54)

which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)
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For future use we will combine the components of 
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which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)
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5.3 Rate of bending, or rate of change of normal and geodesic curvature

In order to find how the coefficients of the second fundamental form and the
Christoffel symbols vary with time we need

∂aα,β

∂ t
=

∂
∂ t
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bαβ n+Γλ

αβ aλ

)

=
∂bαβ
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n+
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+Γλ
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(
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)
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−aα ·aλ

,β u,λ = aα ·
(

aλ u,λ

)
,β
+Γλ

αβ u,λ

=
(
aβ aα

)
· ·∇∇u+Γλ

αβ u,λ

(48)

and
(
aβ aα

)
· ·∇∇u =

(
aβ aα

)
· ·∇(γ +ω −nn ·ω)

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ n ·ω

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ

∂n
∂ t

(49)

which mean that

∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
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(
aβ aα

)
· ·∇∇u−bαβ

∂n
∂ t

=
(
aβ aα

)
· ·∇(γ+ω) (50)

∂bαβ

∂ t
=
(
aβ aαn

)
· · ·∇(γ+ω) (51)

∂Γλ
αβ

∂ t
=
(

aβ aαaλ
)
· · ·∇(γ+ω) . (52)

Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the

somewhat surprising conclusion that
∂Γλ

αβ

∂ t
are the components of a tensor, even

though Γλ
αβ are not, although in the general theory of relativity the derivatives of

the Christoffel symbols lead to the components of the Riemann–Christoffel tensor.

Differentiating eq. (23) with respect to time,
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+
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−

∂aαβ ,η

∂ t

)
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
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ηα
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


= aλη (∇β γηα +∇αγβη −∇ηγαβ
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(53)

 

into the components of one third order tensor, 
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which confirms that
∂Γλ

αβ

∂ t
are indeed the components of a tensor. But note that

the rate of change of the Christoffel symbols of the first kind,
∂Γαβλ

∂ t
, are not the

components of a tensor.

For future use we will combine the components of
∂bαβ

∂ t
and

∂Γλ
αβ

∂ t
into the

components of one third order tensor, β,

β= aαaβ
(

βαβ n+β ·
α
·
β

λ aλ

)
= aαaβ

(
∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ

)

= aαaβ (aαaβ
)
· ·∇(γ+ω)

(54)

which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)

,

The use of virtual work for the formfinding of fabric, shell and gridshell structures

which confirms that
∂Γλ

αβ

∂ t
are indeed the components of a tensor. But note that

the rate of change of the Christoffel symbols of the first kind,
∂Γαβλ

∂ t
, are not the

components of a tensor.

For future use we will combine the components of
∂bαβ

∂ t
and

∂Γλ
αβ

∂ t
into the

components of one third order tensor, β,

β= aαaβ
(

βαβ n+β ·
α
·
β

λ aλ

)
= aαaβ

(
∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ

)

= aαaβ (aαaβ
)
· ·∇(γ+ω)

(54)

which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)
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which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫
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(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)

We do not have to justify this equation in any way, except to say that we 
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which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫
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(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)
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We can stipulate that
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which confirms that
∂Γλ
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which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)

because (𝑑𝑑r × n) lies in the plane of the surface. We will also stipulate 

that
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because (dr×n) lies in the plane of the surface. We will also stipulate that

(aαn) · ·m = 0 (58)
n · c = 0 (59)

and include the work done by that part of ω containing n from the ‘right hand
part’ of the third order tensor m. Thus we can write the components

σ= aα

(
σαβ aβ +σαn

)
(60)

m = aαaβ

(
mαβ n+mα

·
β
· χaχ

)
. (61)

σ αβ are the components of membrane stress and σα are the components of normal
shear force. mαβ are the components of normal bending and twisting moment and
mα
·

β
· χ are the components of the geodesic bending moments.

We can now use the divergence theorem, eq. (36), to change the boundary integral
in eq. (55) to a surface integral,

W =
∫

A

∇ · (σ ·u+m · ·(γ+ω))dA+
∫

A

(p ·u+ c · ·(γ+ω))dA (62)

in which

∇ · (σ ·u+m · ·(γ+ω)) = aα · (σ ·u+m · ·(γ+ω)),α

= ∇ ·σ ·u+∇ ·m · ·(γ+ω)

+σ · ·(aαaα ·∇u)+m · · · (aαaα ·∇(γ+ω))

= ∇ ·σ ·u+∇ ·m · ·(γ+ω)

+σ · ·(γ+ω)+m · · ·β

(63)

so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·(γ+ω)+m · · ·β)dA . (64)

6.2 The equilibrium equations

If u and ω are such that we have a rigid body motion, then γ and β are both zero
so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·ω)dA . (65)

We now postulate that no net work can be done in any rigid body motion of a
structure in equilibrium, so that W = 0, even if we change the location the boundary
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which confirms that
∂Γλ

αβ

∂ t
are indeed the components of a tensor. But note that

the rate of change of the Christoffel symbols of the first kind,
∂Γαβλ

∂ t
, are not the

components of a tensor.

For future use we will combine the components of
∂bαβ

∂ t
and

∂Γλ
αβ

∂ t
into the

components of one third order tensor, β,

β= aαaβ
(

βαβ n+β ·
α
·
β

λ aλ

)
= aαaβ

(
∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ
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= aαaβ (aαaβ
)
· ·∇(γ+ω)
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which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)

 containing n from the ‘‘right 

hand part’’ of the third order tensor m. Thus we can write the compo-

nents
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because (dr×n) lies in the plane of the surface. We will also stipulate that

(aαn) · ·m = 0 (58)
n · c = 0 (59)

and include the work done by that part of ω containing n from the ‘right hand
part’ of the third order tensor m. Thus we can write the components

σ= aα

(
σαβ aβ +σαn

)
(60)

m = aαaβ

(
mαβ n+mα

·
β
· χaχ

)
. (61)

σαβ are the components of membrane stress and σα are the components of normal
shear force. mαβ are the components of normal bending and twisting moment and
mα
·

β
· χ are the components of the geodesic bending moments.

We can now use the divergence theorem, eq. (36), to change the boundary integral
in eq. (55) to a surface integral,

W =
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A
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6.2 The equilibrium equations

If u and ω are such that we have a rigid body motion, then γ and β are both zero
so that

W =
∫
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((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·ω)dA . (65)

We now postulate that no net work can be done in any rigid body motion of a
structure in equilibrium, so that W = 0, even if we change the location the boundary
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∂ t
are indeed the components of a tensor. But note that

the rate of change of the Christoffel symbols of the first kind,
∂Γαβλ

∂ t
, are not the

components of a tensor.

For future use we will combine the components of
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∂ t
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components of one third order tensor, β,
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α
·
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)
= aαaβ

(
∂bαβ

∂ t
n+

∂Γλ
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∂ t
aλ

)

= aαaβ (aαaβ
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· ·∇(γ+ω)

(54)

which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is
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∫
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(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.
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tion the boundary relative to the surface, adding or removing parts of the 

surface to just include some arbitrary part of the structure. This leads to 

the equation of equilibrium of forces,
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relative to the surface, adding or removing parts of the surface to just include some
arbitrary part of the structure. This leads to the equation of equilibrium of forces,

∇ ·σ+p = 0 (66)

and of moments
(σ+∇ ·m+ c) = (σ+∇ ·m+ c)T (67)

because ω is anti-symmetric.

6.3 The rate of work being absorbed

Finally we have the rate of work being absorbed by the structure,

W =

∫

A

((σ+∇ ·m+ c) · ·γ+m · · ·β)dA

=
∫

A

((σ+ c) · ·γ+m · · ·∇ω)dA+
∫

∂A

(dr×n) ·m · ·γ .
(68)

The term c · ·γ is there because the laths of a gridshell like that of the Mannheim
Multihalle can undergo different angular velocities about an axis normal to the
surface, like a pair of scissors, and the loading couples c can therefore do work.

It is important to realize that
∂bαβ

∂ t
may be non zero even when ∇ω is zero. For

example when a spherical shell undergoes a uniform expansion there are no rotations
but bαβ change because of the change in the magnitude of aα .

6.4 The equilibrium equations and rate of work being absorbed in terms
of components

We ought, perhaps, to write the equilibrium equations, eq. (66) and eq. (67), in
terms of components when they lose their essential simplicity,

∇ασαβ −σαbβ
α + pβ = 0 (69)

σαβ bαβ +∇ασα + p = 0 (70)

εαβ

(
σαβ −mηαbβ

η +∇ηmηαβ + cαβ
)
= 0 (71)

σβ +∇αmαβ +
(

mλ µβ +mλβ µ
)

bλ µ + cβ = 0 . (72)

These equations are identical to equations (10.4.4) to (10.4.7) of Green and Zerna
(1968), if one makes the following changes to the notation, nαβ = σ αβ , qα = σ α ,
p̃β =−cβ , the sign of mαβ are reversed, |α is used instead of ∇α for the covariant
derivative and the components mηαβ = 0 and cαβ = 0. Green and Zerna derive their
equations from the 3 dimensional equations of equilibrium and integrating through

and of moments
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which confirms that
∂Γλ

αβ

∂ t
are indeed the components of a tensor. But note that

the rate of change of the Christoffel symbols of the first kind,
∂Γαβλ

∂ t
, are not the

components of a tensor.

For future use we will combine the components of
∂bαβ
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and
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into the

components of one third order tensor, β,
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(54)

which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫
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(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)
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p̃β =−cβ , the sign of mαβ are reversed, |α is used instead of ∇α for the covariant
derivative and the components mηαβ = 0 and cαβ = 0. Green and Zerna derive their
equations from the 3 dimensional equations of equilibrium and integrating through

The term c · · γ is there because the laths of a gridshell like that of the 

Mannheim Multihalle can undergo different angular velocities about an 

axis normal to the surface, like a pair of scissors, and the loading coup-

les c can therefore do work.

It is important to realize that 
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which confirms that
∂Γλ

αβ

∂ t
are indeed the components of a tensor. But note that

the rate of change of the Christoffel symbols of the first kind,
∂Γαβλ

∂ t
, are not the

components of a tensor.

For future use we will combine the components of
∂bαβ

∂ t
and

∂Γλ
αβ

∂ t
into the

components of one third order tensor, β,

β= aαaβ
(

βαβ n+β ·
α
·
β

λ aλ

)
= aαaβ

(
∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ

)

= aαaβ (aαaβ
)
· ·∇(γ+ω)

(54)

which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)

 may be non zero even when ∇
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which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)

 is 

zero. For example when a spherical shell undergoes a uniform expansion  

there are no rotations but 𝑏𝑏αβ change because of the change in the 

magnitude of aα .
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We can stipulate that
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which confirms that
∂Γλ
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∂ t
are indeed the components of a tensor. But note that

the rate of change of the Christoffel symbols of the first kind,
∂Γαβλ
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, are not the

components of a tensor.

For future use we will combine the components of
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and

∂Γλ
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into the

components of one third order tensor, β,

β= aαaβ
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βαβ n+β ·
α
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λ aλ

)
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(
∂bαβ
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∂ t
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)

= aαaβ (aαaβ
)
· ·∇(γ+ω)

(54)

which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)

because (𝑑𝑑r × n) lies in the plane of the surface. We will also stipulate 

that

Emil Adiels, Mats Ander, Erica Hörteborn, Jens Olsson, Karl-Gunnar Olsson, Alexander Sehlström,
Paul Shepherd, Chris Williams

because (dr×n) lies in the plane of the surface. We will also stipulate that

(aαn) · ·m = 0 (58)
n · c = 0 (59)

and include the work done by that part of ω containing n from the ‘right hand
part’ of the third order tensor m. Thus we can write the components

σ= aα

(
σαβ aβ +σαn

)
(60)

m = aαaβ

(
mαβ n+mα

·
β
· χaχ

)
. (61)

σ αβ are the components of membrane stress and σα are the components of normal
shear force. mαβ are the components of normal bending and twisting moment and
mα
·

β
· χ are the components of the geodesic bending moments.

We can now use the divergence theorem, eq. (36), to change the boundary integral
in eq. (55) to a surface integral,

W =
∫

A

∇ · (σ ·u+m · ·(γ+ω))dA+
∫

A

(p ·u+ c · ·(γ+ω))dA (62)

in which

∇ · (σ ·u+m · ·(γ+ω)) = aα · (σ ·u+m · ·(γ+ω)),α

= ∇ ·σ ·u+∇ ·m · ·(γ+ω)

+σ · ·(aαaα ·∇u)+m · · · (aαaα ·∇(γ+ω))

= ∇ ·σ ·u+∇ ·m · ·(γ+ω)

+σ · ·(γ+ω)+m · · ·β

(63)

so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·(γ+ω)+m · · ·β)dA . (64)

6.2 The equilibrium equations

If u and ω are such that we have a rigid body motion, then γ and β are both zero
so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·ω)dA . (65)

We now postulate that no net work can be done in any rigid body motion of a
structure in equilibrium, so that W = 0, even if we change the location the boundary

and include the work done by that part of 
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which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)
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because (dr×n) lies in the plane of the surface. We will also stipulate that

(aαn) · ·m = 0 (58)
n · c = 0 (59)

and include the work done by that part of ω containing n from the ‘right hand
part’ of the third order tensor m. Thus we can write the components

σ= aα

(
σαβ aβ +σαn

)
(60)

m = aαaβ

(
mαβ n+mα

·
β
· χaχ

)
. (61)

σαβ are the components of membrane stress and σα are the components of normal
shear force. mαβ are the components of normal bending and twisting moment and
mα
·

β
· χ are the components of the geodesic bending moments.

We can now use the divergence theorem, eq. (36), to change the boundary integral
in eq. (55) to a surface integral,

W =
∫

A

∇ · (σ ·u+m · ·(γ+ω))dA+
∫

A

(p ·u+ c · ·(γ+ω))dA (62)

in which

∇ · (σ ·u+m · ·(γ+ω)) = aα · (σ ·u+m · ·(γ+ω)),α

= ∇ ·σ ·u+∇ ·m · ·(γ+ω)

+σ · ·(aαaα ·∇u)+m · · · (aαaα ·∇(γ+ω))

= ∇ ·σ ·u+∇ ·m · ·(γ+ω)

+σ · ·(γ+ω)+m · · ·β

(63)

so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·(γ+ω)+m · · ·β)dA . (64)

6.2 The equilibrium equations

If u and ω are such that we have a rigid body motion, then γ and β are both zero
so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·ω)dA . (65)

We now postulate that no net work can be done in any rigid body motion of a
structure in equilibrium, so that W = 0, even if we change the location the boundary
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because (dr×n) lies in the plane of the surface. We will also stipulate that

(aαn) · ·m = 0 (58)
n · c = 0 (59)

and include the work done by that part of ω containing n from the ‘right hand
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σαβ are the components of membrane stress and σα are the components of normal
shear force. mαβ are the components of normal bending and twisting moment and
mα
·

β
· χ are the components of the geodesic bending moments.

We can now use the divergence theorem, eq. (36), to change the boundary integral
in eq. (55) to a surface integral,

W =
∫
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so that

W =
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((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·(γ+ω)+m · · ·β)dA . (64)

6.2 The equilibrium equations

If u and ω are such that we have a rigid body motion, then γ and β are both zero
so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·ω)dA . (65)

We now postulate that no net work can be done in any rigid body motion of a
structure in equilibrium, so that W = 0, even if we change the location the boundary
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because (dr×n) lies in the plane of the surface. We will also stipulate that

(aαn) · ·m = 0 (58)
n · c = 0 (59)

and include the work done by that part of ω containing n from the ‘right hand
part’ of the third order tensor m. Thus we can write the components
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)
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σ αβ are the components of membrane stress and σα are the components of normal
shear force. mαβ are the components of normal bending and twisting moment and
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We can now use the divergence theorem, eq. (36), to change the boundary integral
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so that
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((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·(γ+ω)+m · · ·β)dA . (64)

6.2 The equilibrium equations

If u and ω are such that we have a rigid body motion, then γ and β are both zero
so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·ω)dA . (65)

We now postulate that no net work can be done in any rigid body motion of a
structure in equilibrium, so that W = 0, even if we change the location the boundary
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because (dr×n) lies in the plane of the surface. We will also stipulate that

(aαn) · ·m = 0 (58)
n · c = 0 (59)

and include the work done by that part of ω containing n from the ‘right hand
part’ of the third order tensor m. Thus we can write the components
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(
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σ αβ are the components of membrane stress and σα are the components of normal
shear force. mαβ are the components of normal bending and twisting moment and
mα
·

β
· χ are the components of the geodesic bending moments.

We can now use the divergence theorem, eq. (36), to change the boundary integral
in eq. (55) to a surface integral,

W =
∫
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∇ · (σ ·u+m · ·(γ+ω))dA+
∫
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in which
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(63)

so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·(γ+ω)+m · · ·β)dA . (64)

6.2 The equilibrium equations

If u and ω are such that we have a rigid body motion, then γ and β are both zero
so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·ω)dA . (65)

We now postulate that no net work can be done in any rigid body motion of a
structure in equilibrium, so that W = 0, even if we change the location the boundary
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because (dr×n) lies in the plane of the surface. We will also stipulate that

(aαn) · ·m = 0 (58)
n · c = 0 (59)

and include the work done by that part of ω containing n from the ‘right hand
part’ of the third order tensor m. Thus we can write the components
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(
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)
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·
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σ αβ are the components of membrane stress and σα are the components of normal
shear force. mαβ are the components of normal bending and twisting moment and
mα
·

β
· χ are the components of the geodesic bending moments.

We can now use the divergence theorem, eq. (36), to change the boundary integral
in eq. (55) to a surface integral,

W =
∫

A

∇ · (σ ·u+m · ·(γ+ω))dA+
∫
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(p ·u+ c · ·(γ+ω))dA (62)

in which

∇ · (σ ·u+m · ·(γ+ω)) = aα · (σ ·u+m · ·(γ+ω)),α

= ∇ ·σ ·u+∇ ·m · ·(γ+ω)

+σ · ·(aαaα ·∇u)+m · · · (aαaα ·∇(γ+ω))

= ∇ ·σ ·u+∇ ·m · ·(γ+ω)

+σ · ·(γ+ω)+m · · ·β

(63)

so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·(γ+ω)+m · · ·β)dA . (64)

6.2 The equilibrium equations

If u and ω are such that we have a rigid body motion, then γ and β are both zero
so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·ω)dA . (65)

We now postulate that no net work can be done in any rigid body motion of a
structure in equilibrium, so that W = 0, even if we change the location the boundary
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6.2 The equilibrium equations 

If u and 
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which confirms that
∂Γλ
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∂ t
are indeed the components of a tensor. But note that

the rate of change of the Christoffel symbols of the first kind,
∂Γαβλ

∂ t
, are not the

components of a tensor.

For future use we will combine the components of
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and
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components of one third order tensor, β,
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which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)

 are such that we have a rigid body motion, then γ and β are 

both zero so that
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because (dr×n) lies in the plane of the surface. We will also stipulate that

(aαn) · ·m = 0 (58)
n · c = 0 (59)

and include the work done by that part of ω containing n from the ‘right hand
part’ of the third order tensor m. Thus we can write the components

σ= aα

(
σαβ aβ +σαn

)
(60)

m = aαaβ

(
mαβ n+mα

·
β
· χaχ

)
. (61)

σ αβ are the components of membrane stress and σα are the components of normal
shear force. mαβ are the components of normal bending and twisting moment and
mα
·

β
· χ are the components of the geodesic bending moments.

We can now use the divergence theorem, eq. (36), to change the boundary integral
in eq. (55) to a surface integral,

W =
∫

A

∇ · (σ ·u+m · ·(γ+ω))dA+
∫

A

(p ·u+ c · ·(γ+ω))dA (62)

in which

∇ · (σ ·u+m · ·(γ+ω)) = aα · (σ ·u+m · ·(γ+ω)),α

= ∇ ·σ ·u+∇ ·m · ·(γ+ω)

+σ · ·(aαaα ·∇u)+m · · · (aαaα ·∇(γ+ω))

= ∇ ·σ ·u+∇ ·m · ·(γ+ω)

+σ · ·(γ+ω)+m · · ·β

(63)

so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·(γ+ω)+m · · ·β)dA . (64)

6.2 The equilibrium equations

If u and ω are such that we have a rigid body motion, then γ and β are both zero
so that

W =
∫

A

((∇ ·σ+p) ·u+(σ+∇ ·m+ c) · ·ω)dA . (65)

We now postulate that no net work can be done in any rigid body motion of a
structure in equilibrium, so that W = 0, even if we change the location the boundaryWe now postulate that no net work can be done in any rigid body motion 

of a structure in equilibrium, so that W = 0, even if we change the loca-

tion the boundary relative to the surface, adding or removing parts of the 

surface to just include some arbitrary part of the structure. This leads to 

the equation of equilibrium of forces,
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relative to the surface, adding or removing parts of the surface to just include some
arbitrary part of the structure. This leads to the equation of equilibrium of forces,

∇ ·σ+p = 0 (66)

and of moments
(σ+∇ ·m+ c) = (σ+∇ ·m+ c)T (67)

because ω is anti-symmetric.

6.3 The rate of work being absorbed

Finally we have the rate of work being absorbed by the structure,

W =

∫

A

((σ+∇ ·m+ c) · ·γ+m · · ·β)dA

=
∫

A

((σ+ c) · ·γ+m · · ·∇ω)dA+
∫

∂A

(dr×n) ·m · ·γ .
(68)

The term c · ·γ is there because the laths of a gridshell like that of the Mannheim
Multihalle can undergo different angular velocities about an axis normal to the
surface, like a pair of scissors, and the loading couples c can therefore do work.

It is important to realize that
∂bαβ

∂ t
may be non zero even when ∇ω is zero. For

example when a spherical shell undergoes a uniform expansion there are no rotations
but bαβ change because of the change in the magnitude of aα .

6.4 The equilibrium equations and rate of work being absorbed in terms
of components

We ought, perhaps, to write the equilibrium equations, eq. (66) and eq. (67), in
terms of components when they lose their essential simplicity,

∇ασαβ −σαbβ
α + pβ = 0 (69)

σαβ bαβ +∇ασα + p = 0 (70)

εαβ

(
σαβ −mηαbβ

η +∇ηmηαβ + cαβ
)
= 0 (71)

σβ +∇αmαβ +
(

mλ µβ +mλβ µ
)

bλ µ + cβ = 0 . (72)

These equations are identical to equations (10.4.4) to (10.4.7) of Green and Zerna
(1968), if one makes the following changes to the notation, nαβ = σ αβ , qα = σ α ,
p̃β =−cβ , the sign of mαβ are reversed, |α is used instead of ∇α for the covariant
derivative and the components mηαβ = 0 and cαβ = 0. Green and Zerna derive their
equations from the 3 dimensional equations of equilibrium and integrating through

and of moments
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which confirms that
∂Γλ

αβ

∂ t
are indeed the components of a tensor. But note that

the rate of change of the Christoffel symbols of the first kind,
∂Γαβλ

∂ t
, are not the

components of a tensor.

For future use we will combine the components of
∂bαβ

∂ t
and

∂Γλ
αβ

∂ t
into the

components of one third order tensor, β,

β= aαaβ
(

βαβ n+β ·
α
·
β

λ aλ

)
= aαaβ

(
∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ

)

= aαaβ (aαaβ
)
· ·∇(γ+ω)

(54)

which we might call the rate of bending tensor. It includes both the rate of change
of the normal curvature as well as the rate of change of the geodesic curvature of
lines on the surface.

6 Puissances virtuelles - rate of virtual work being done on a
surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫

∂A

(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that

n ·σ= 0 (56)
n ·m = 0 (57)

 is anti-symmetric.

6.3 The rate of work being absorbed 
Finally we have the rate of work being absorbed by the structure,
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and of moments
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surface structure

6.1 The rate of virtual work

The rate of virtual work being done on a surface A with boundary ∂A as it moves
and deforms is

W =
∫
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(dr×n) · (σ ·u+m · ·(γ+ω))+
∫

A

(p ·u+ c · ·(γ+ω))dA . (55)

We do not have to justify this equation in any way, except to say that we assume
that W only depends upon u and (γ+ω) and the loading on the surface itself
and its boundary. Equation (55) is the definition of the vector p, the second order
tensors c and σ and the third order tensor m, whose physical interpretation were
given in Section 3.

We could add other terms, particularly those to include shear deformation as in
a Timoshenko (1921) or Cosserat (1909) beam or shell. Such deformation was
important in the design of the Mannheim Multihalle gridshell because of the flexible
connection between the upper and lower parallel members. However, while not
difficult to add such deformation, it introduces further complexity which is not
relevant to this paper.

We can stipulate that
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there are no rotations but 𝑏𝑏αβ change because of the change in the 

magnitude of aα .
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6.4 The equilibrium equations and rate of work being 
absorbed in terms of components

We ought, perhaps, to write the equilibrium equations, eq. (66) and eq. 

(67), in terms of components when they lose their essential simplicity,
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relative to the surface, adding or removing parts of the surface to just include some
arbitrary part of the structure. This leads to the equation of equilibrium of forces,

∇ ·σ+p = 0 (66)

and of moments
(σ+∇ ·m+ c) = (σ+∇ ·m+ c)T (67)

because ω is anti-symmetric.

6.3 The rate of work being absorbed

Finally we have the rate of work being absorbed by the structure,

W =

∫

A

((σ+∇ ·m+ c) · ·γ+m · · ·β)dA

=
∫

A

((σ+ c) · ·γ+m · · ·∇ω)dA+
∫

∂A

(dr×n) ·m · ·γ .
(68)

The term c · ·γ is there because the laths of a gridshell like that of the Mannheim
Multihalle can undergo different angular velocities about an axis normal to the
surface, like a pair of scissors, and the loading couples c can therefore do work.

It is important to realize that
∂bαβ

∂ t
may be non zero even when ∇ω is zero. For

example when a spherical shell undergoes a uniform expansion there are no rotations
but bαβ change because of the change in the magnitude of aα .

6.4 The equilibrium equations and rate of work being absorbed in terms
of components

We ought, perhaps, to write the equilibrium equations, eq. (66) and eq. (67), in
terms of components when they lose their essential simplicity,

∇ασαβ −σαbβ
α + pβ = 0 (69)

σαβ bαβ +∇ασα + p = 0 (70)

εαβ

(
σαβ −mηαbβ

η +∇ηmηαβ + cαβ
)
= 0 (71)

σβ +∇αmαβ +
(

mλ µβ +mλβ µ
)

bλ µ + cβ = 0 . (72)

These equations are identical to equations (10.4.4) to (10.4.7) of Green and Zerna
(1968), if one makes the following changes to the notation, nαβ = σ αβ , qα = σ α ,
p̃β =−cβ , the sign of mαβ are reversed, |α is used instead of ∇α for the covariant
derivative and the components mηαβ = 0 and cαβ = 0. Green and Zerna derive their
equations from the 3 dimensional equations of equilibrium and integrating through

These equations are identical to equations (10.4.4) to (10.4.7) of Green 

and Zerna(1968), if one makes the following changes to the notation, 

𝑛𝑛αβ = σαβ , 𝑞𝑞α = σα ,p̃ β = −cβ , the sign of 𝑚𝑚αβ are reversed, |α is used 

instead of ∇α for the covariant derivative and the components 𝑚𝑚ηαβ = 0 

and cαβ = 0. Green and Zerna derive their equations from the 3 dimensi-

onal equations of equilibrium and integrating through the thickness of a 

thin shell, but this is rather unsatisfactory for gridshells or ribbed shells.

The rate of work being absorbed, eq. (68), becomes
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the thickness of a thin shell, but this is rather unsatisfactory for gridshells or ribbed
shells.

The rate of work being absorbed, eq. (68), becomes

W =
∫

A

((
σαβ −mηαbβ

η +∇ηmηαβ + cαβ
)

γαβ +mαβ βαβ +mα
·

β
· χβ ·

α
·
β

χ
)

dA .

(73)

7 Elastic surfaces

We define an elastic surface as any surface whose strain energy per unit mass is a
function of aαβ , bαβ and Γλ

αβ . Such structures include soap films, fabric structures,
shells and gridshells, as well as surfaces which minimize the Willmore energy, that is
the surface integral of H2 −K (Velimirović et al., 2011; Williams, 1987).

For an elastic surface the virtual work formulation becomes identical to the mini-
mization of the sum of the strain energy of the structure and the potential energy of
the loads, assuming that they admit a potential. The same results could be obtained
using the calculus of variations, which would need exactly the same geometric
relationships and how they change under an increment of displacement, or better a
velocity allowing us to differentiate with respect to time.

It is preferable to use the strain energy per unit mass than the strain energy per
unit area because mass is conserved, whereas area changes. If Q is the strain energy
per unit mass and ρ is the mass per unit area, we can write

ρ
∂Q
∂ t

= (σ+∇ ·m+ c) · ·γ+m · · ·β

=
(

σαβ −mηαbβ
η +∇ηmηαβ + cαβ

) 1
2

∂aαβ

∂ t

+mαβ ∂bαβ

∂ t
+mα

·
β
· χ

∂Γχ
αβ

∂ t

(74)

in which

∂
∂ t

(
ρ
√

a
)
= 0 (75)

1
ρ

∂ρ
∂ t

=− 1√
a

∂
√

a
∂ t

=−aαβ γαβ . (76)

7.1 Surfaces with constant mean curvature, including minimal surfaces

The strain energy per unit mass of a surface with a constant isotropic surface tension
T is

Q =
T
ρ
. (77)

7. Elastic surfaces 

We define an elastic surface as any surface whose strain energy per 

unit mass is a function of 𝑎𝑎αβ , 𝑏𝑏αβ and 
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5.3 Rate of bending, or rate of change of normal and geodesic curvature

In order to find how the coefficients of the second fundamental form and the
Christoffel symbols vary with time we need

∂aα,β

∂ t
=

∂
∂ t

(
bαβ n+Γλ

αβ aλ

)

=
∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ +bαβ

∂n
∂ t

+Γλ
αβ u,λ

= u,αβ = aα ·
(

aλ u,λ

)
,β
−aα ·aλ

,β u,λ = aα ·
(

aλ u,λ

)
,β
+Γλ

αβ u,λ

=
(
aβ aα

)
· ·∇∇u+Γλ

αβ u,λ

(48)

and
(
aβ aα

)
· ·∇∇u =

(
aβ aα

)
· ·∇(γ +ω −nn ·ω)

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ n ·ω

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ

∂n
∂ t

(49)

which mean that

∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ =

(
aβ aα

)
· ·∇∇u−bαβ

∂n
∂ t

=
(
aβ aα

)
· ·∇(γ+ω) (50)

∂bαβ

∂ t
=
(
aβ aαn

)
· · ·∇(γ+ω) (51)

∂Γλ
αβ

∂ t
=
(

aβ aαaλ
)
· · ·∇(γ+ω) . (52)

Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the

somewhat surprising conclusion that
∂Γλ

αβ

∂ t
are the components of a tensor, even

though Γλ
αβ are not, although in the general theory of relativity the derivatives of

the Christoffel symbols lead to the components of the Riemann–Christoffel tensor.

Differentiating eq. (23) with respect to time,

∂Γλ
αβ

∂ t
=

1
2

∂aαβ

∂ t

(
aηα,β +aβη ,α −aαβ ,η

)
+

1
2

aλη
(

∂aβη ,α

∂ t
+

∂aηα,β

∂ t
−

∂aαβ ,η

∂ t

)

=−2γληaµηΓµ
αβ +aλη




∇β γηα + γχαΓχ
ηβ + γηχΓχ

αβ
+∇αγβη + γχηΓχ

αβ + γβ χΓχ
ηα

−∇ηγαβ − γχβ Γχ
αη − γαχΓχ

βη




= aλη (∇β γηα +∇αγβη −∇ηγαβ
)

(53)

. Such structures include soap 

films, fabric structures, shells and gridshells, as well as surfaces which 

minimize the Willmore energy, that is the surface integral of H 2 − K 
(Velimirovi  et al., 2011; Williams, 1987).

For an elastic surface the virtual work formulation becomes identical 

to the mini- mization of the sum of the strain energy of the structure and 

the potential energy of the loads, assuming that they admit a potential. 

The same results could be obtained using the calculus of variations, 

which would need exactly the same geometric relationships and how 

they change under an increment of displacement, or better a velocity 

allowing us to differentiate with respect to time.

It is preferable to use the strain energy per unit mass than the strain 
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energy per unit area because mass is conserved, whereas area changes. 

If 𝑄𝑄 is the strain energy per unit mass and ρ is the mass per unit area, 

we can write
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the thickness of a thin shell, but this is rather unsatisfactory for gridshells or ribbed
shells.
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mization of the sum of the strain energy of the structure and the potential energy of
the loads, assuming that they admit a potential. The same results could be obtained
using the calculus of variations, which would need exactly the same geometric
relationships and how they change under an increment of displacement, or better a
velocity allowing us to differentiate with respect to time.

It is preferable to use the strain energy per unit mass than the strain energy per
unit area because mass is conserved, whereas area changes. If Q is the strain energy
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Q =
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the thickness of a thin shell, but this is rather unsatisfactory for gridshells or ribbed
shells.
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7 Elastic surfaces

We define an elastic surface as any surface whose strain energy per unit mass is a
function of aαβ , bαβ and Γλ

αβ . Such structures include soap films, fabric structures,
shells and gridshells, as well as surfaces which minimize the Willmore energy, that is
the surface integral of H2 −K (Velimirović et al., 2011; Williams, 1987).

For an elastic surface the virtual work formulation becomes identical to the mini-
mization of the sum of the strain energy of the structure and the potential energy of
the loads, assuming that they admit a potential. The same results could be obtained
using the calculus of variations, which would need exactly the same geometric
relationships and how they change under an increment of displacement, or better a
velocity allowing us to differentiate with respect to time.

It is preferable to use the strain energy per unit mass than the strain energy per
unit area because mass is conserved, whereas area changes. If Q is the strain energy
per unit mass and ρ is the mass per unit area, we can write

ρ
∂Q
∂ t

= (σ+∇ ·m+ c) · ·γ+m · · ·β

=
(

σαβ −mηαbβ
η +∇ηmηαβ + cαβ

) 1
2

∂aαβ

∂ t

+mαβ ∂bαβ

∂ t
+mα

·
β
· χ

∂Γχ
αβ

∂ t

(74)

in which

∂
∂ t

(
ρ
√

a
)
= 0 (75)

1
ρ

∂ρ
∂ t

=− 1√
a

∂
√

a
∂ t

=−aαβ γαβ . (76)

7.1 Surfaces with constant mean curvature, including minimal surfaces

The strain energy per unit mass of a surface with a constant isotropic surface tension
T is

Q =
T
ρ
. (77)

7.1 Surfaces with constant mean curvature, including 
minimal surfaces 

The strain energy per unit mass of a surface with a constant isotropic 

surface tension T is
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the thickness of a thin shell, but this is rather unsatisfactory for gridshells or ribbed
shells.
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mization of the sum of the strain energy of the structure and the potential energy of
the loads, assuming that they admit a potential. The same results could be obtained
using the calculus of variations, which would need exactly the same geometric
relationships and how they change under an increment of displacement, or better a
velocity allowing us to differentiate with respect to time.

It is preferable to use the strain energy per unit mass than the strain energy per
unit area because mass is conserved, whereas area changes. If Q is the strain energy
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7.1 Surfaces with constant mean curvature, including minimal surfaces

The strain energy per unit mass of a surface with a constant isotropic surface tension
T is

Q =
T
ρ
. (77)

Thus 𝑄𝑄 does not depend upon 𝑏𝑏αβ or 
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5.3 Rate of bending, or rate of change of normal and geodesic curvature

In order to find how the coefficients of the second fundamental form and the
Christoffel symbols vary with time we need

∂aα,β

∂ t
=

∂
∂ t

(
bαβ n+Γλ

αβ aλ

)

=
∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ +bαβ

∂n
∂ t

+Γλ
αβ u,λ

= u,αβ = aα ·
(

aλ u,λ

)
,β
−aα ·aλ

,β u,λ = aα ·
(

aλ u,λ

)
,β
+Γλ

αβ u,λ

=
(
aβ aα

)
· ·∇∇u+Γλ

αβ u,λ

(48)

and
(
aβ aα

)
· ·∇∇u =

(
aβ aα

)
· ·∇(γ +ω −nn ·ω)

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ n ·ω

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ

∂n
∂ t

(49)

which mean that

∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ =

(
aβ aα

)
· ·∇∇u−bαβ

∂n
∂ t

=
(
aβ aα

)
· ·∇(γ+ω) (50)

∂bαβ

∂ t
=
(
aβ aαn

)
· · ·∇(γ+ω) (51)

∂Γλ
αβ

∂ t
=
(

aβ aαaλ
)
· · ·∇(γ+ω) . (52)

Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the

somewhat surprising conclusion that
∂Γλ

αβ

∂ t
are the components of a tensor, even

though Γλ
αβ are not, although in the general theory of relativity the derivatives of

the Christoffel symbols lead to the components of the Riemann–Christoffel tensor.

Differentiating eq. (23) with respect to time,

∂Γλ
αβ

∂ t
=

1
2

∂aαβ

∂ t

(
aηα,β +aβη ,α −aαβ ,η

)
+

1
2

aλη
(

∂aβη ,α

∂ t
+

∂aηα,β

∂ t
−

∂aαβ ,η

∂ t

)

=−2γληaµηΓµ
αβ +aλη




∇β γηα + γχαΓχ
ηβ + γηχΓχ

αβ
+∇αγβη + γχηΓχ

αβ + γβ χΓχ
ηα

−∇ηγαβ − γχβ Γχ
αη − γαχΓχ

βη




= aλη (∇β γηα +∇αγβη −∇ηγαβ
)

(53)

 and so the moments are zero 

giving
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Thus Q does not depend upon bαβ or Γλ
αβ and so the moments are zero giving

σ= σ αβ aαaβ = σβαaαaβ (78)

and eq. (74) becomes

∂
∂ t

(
T
ρ

)
=− T

ρ2
∂ρ
∂ t

=
T
ρ

aαβ γαβ =
1
ρ

σαβ γαβ . (79)

Thus the membrane stress

σαβ = T aαβ

σ= T J
(80)

corresponding to the uniform surface tension.

J = aαβ aαaβ (81)

is the unit tensor on the surface.

Figure 2: Surface with constant mean curvature on a plane elliptical boundary

The surface in fig. 2 was found using dynamic relaxation (Day, 1965). The boundary
is a plane ellipse and the surface has the minimum surface area for a given enclosed
volume, like an inflated soap film. Dynamic relaxation was also used to find the
pressure necessary to enclose a fixed volume. The pressure cannot be kept constant
for a surface such as this because the pressure decreases with increasing volume,
once it is inflated beyond a certain point. It was found necessary to damp the
pressure change with both the rates of change of pressure and volume.

and eq. (74) becomes
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6.4 The equilibrium equations and rate of work being 
absorbed in terms of components

We ought, perhaps, to write the equilibrium equations, eq. (66) and eq. 

(67), in terms of components when they lose their essential simplicity,

The use of virtual work for the formfinding of fabric, shell and gridshell structures

relative to the surface, adding or removing parts of the surface to just include some
arbitrary part of the structure. This leads to the equation of equilibrium of forces,

∇ ·σ+p = 0 (66)

and of moments
(σ+∇ ·m+ c) = (σ+∇ ·m+ c)T (67)

because ω is anti-symmetric.

6.3 The rate of work being absorbed

Finally we have the rate of work being absorbed by the structure,

W =

∫

A

((σ+∇ ·m+ c) · ·γ+m · · ·β)dA

=
∫

A

((σ+ c) · ·γ+m · · ·∇ω)dA+
∫

∂A

(dr×n) ·m · ·γ .
(68)

The term c · ·γ is there because the laths of a gridshell like that of the Mannheim
Multihalle can undergo different angular velocities about an axis normal to the
surface, like a pair of scissors, and the loading couples c can therefore do work.

It is important to realize that
∂bαβ

∂ t
may be non zero even when ∇ω is zero. For

example when a spherical shell undergoes a uniform expansion there are no rotations
but bαβ change because of the change in the magnitude of aα .

6.4 The equilibrium equations and rate of work being absorbed in terms
of components

We ought, perhaps, to write the equilibrium equations, eq. (66) and eq. (67), in
terms of components when they lose their essential simplicity,

∇ασαβ −σαbβ
α + pβ = 0 (69)

σαβ bαβ +∇ασα + p = 0 (70)

εαβ

(
σαβ −mηαbβ

η +∇ηmηαβ + cαβ
)
= 0 (71)

σβ +∇αmαβ +
(

mλ µβ +mλβ µ
)

bλ µ + cβ = 0 . (72)

These equations are identical to equations (10.4.4) to (10.4.7) of Green and Zerna
(1968), if one makes the following changes to the notation, nαβ = σ αβ , qα = σ α ,
p̃β =−cβ , the sign of mαβ are reversed, |α is used instead of ∇α for the covariant
derivative and the components mηαβ = 0 and cαβ = 0. Green and Zerna derive their
equations from the 3 dimensional equations of equilibrium and integrating through

These equations are identical to equations (10.4.4) to (10.4.7) of Green 

and Zerna(1968), if one makes the following changes to the notation, 

𝑛𝑛αβ = σαβ , 𝑞𝑞α = σα ,p̃ β = −cβ , the sign of 𝑚𝑚αβ are reversed, |α is used 

instead of ∇α for the covariant derivative and the components 𝑚𝑚ηαβ = 0 

and cαβ = 0. Green and Zerna derive their equations from the 3 dimensi-

onal equations of equilibrium and integrating through the thickness of a 

thin shell, but this is rather unsatisfactory for gridshells or ribbed shells.

The rate of work being absorbed, eq. (68), becomes
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the thickness of a thin shell, but this is rather unsatisfactory for gridshells or ribbed
shells.

The rate of work being absorbed, eq. (68), becomes

W =
∫

A

((
σαβ −mηαbβ

η +∇ηmηαβ + cαβ
)

γαβ +mαβ βαβ +mα
·

β
· χβ ·

α
·
β

χ
)

dA .

(73)

7 Elastic surfaces

We define an elastic surface as any surface whose strain energy per unit mass is a
function of aαβ , bαβ and Γλ

αβ . Such structures include soap films, fabric structures,
shells and gridshells, as well as surfaces which minimize the Willmore energy, that is
the surface integral of H2 −K (Velimirović et al., 2011; Williams, 1987).

For an elastic surface the virtual work formulation becomes identical to the mini-
mization of the sum of the strain energy of the structure and the potential energy of
the loads, assuming that they admit a potential. The same results could be obtained
using the calculus of variations, which would need exactly the same geometric
relationships and how they change under an increment of displacement, or better a
velocity allowing us to differentiate with respect to time.

It is preferable to use the strain energy per unit mass than the strain energy per
unit area because mass is conserved, whereas area changes. If Q is the strain energy
per unit mass and ρ is the mass per unit area, we can write

ρ
∂Q
∂ t

= (σ+∇ ·m+ c) · ·γ+m · · ·β

=
(

σαβ −mηαbβ
η +∇ηmηαβ + cαβ

) 1
2

∂aαβ

∂ t

+mαβ ∂bαβ

∂ t
+mα

·
β
· χ

∂Γχ
αβ

∂ t

(74)

in which

∂
∂ t

(
ρ
√

a
)
= 0 (75)

1
ρ

∂ρ
∂ t

=− 1√
a

∂
√

a
∂ t

=−aαβ γαβ . (76)

7.1 Surfaces with constant mean curvature, including minimal surfaces

The strain energy per unit mass of a surface with a constant isotropic surface tension
T is

Q =
T
ρ
. (77)

7. Elastic surfaces 

We define an elastic surface as any surface whose strain energy per 

unit mass is a function of 𝑎𝑎αβ , 𝑏𝑏αβ and 
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5.3 Rate of bending, or rate of change of normal and geodesic curvature

In order to find how the coefficients of the second fundamental form and the
Christoffel symbols vary with time we need

∂aα,β

∂ t
=

∂
∂ t

(
bαβ n+Γλ

αβ aλ

)

=
∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ +bαβ

∂n
∂ t

+Γλ
αβ u,λ

= u,αβ = aα ·
(

aλ u,λ

)
,β
−aα ·aλ

,β u,λ = aα ·
(

aλ u,λ

)
,β
+Γλ

αβ u,λ

=
(
aβ aα

)
· ·∇∇u+Γλ

αβ u,λ

(48)

and
(
aβ aα

)
· ·∇∇u =

(
aβ aα

)
· ·∇(γ +ω −nn ·ω)

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ n ·ω

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ

∂n
∂ t

(49)

which mean that

∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ =

(
aβ aα

)
· ·∇∇u−bαβ

∂n
∂ t

=
(
aβ aα

)
· ·∇(γ+ω) (50)

∂bαβ

∂ t
=
(
aβ aαn

)
· · ·∇(γ+ω) (51)

∂Γλ
αβ

∂ t
=
(

aβ aαaλ
)
· · ·∇(γ+ω) . (52)

Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the

somewhat surprising conclusion that
∂Γλ

αβ

∂ t
are the components of a tensor, even

though Γλ
αβ are not, although in the general theory of relativity the derivatives of

the Christoffel symbols lead to the components of the Riemann–Christoffel tensor.

Differentiating eq. (23) with respect to time,

∂Γλ
αβ

∂ t
=

1
2

∂aαβ

∂ t

(
aηα,β +aβη ,α −aαβ ,η

)
+

1
2

aλη
(

∂aβη ,α

∂ t
+

∂aηα,β

∂ t
−

∂aαβ ,η

∂ t

)

=−2γληaµηΓµ
αβ +aλη




∇β γηα + γχαΓχ
ηβ + γηχΓχ

αβ
+∇αγβη + γχηΓχ

αβ + γβ χΓχ
ηα

−∇ηγαβ − γχβ Γχ
αη − γαχΓχ

βη




= aλη (∇β γηα +∇αγβη −∇ηγαβ
)

(53)

. Such structures include soap 

films, fabric structures, shells and gridshells, as well as surfaces which 

minimize the Willmore energy, that is the surface integral of H 2 − K 
(Velimirovi  et al., 2011; Williams, 1987).

For an elastic surface the virtual work formulation becomes identical 

to the mini- mization of the sum of the strain energy of the structure and 

the potential energy of the loads, assuming that they admit a potential. 

The same results could be obtained using the calculus of variations, 

which would need exactly the same geometric relationships and how 

they change under an increment of displacement, or better a velocity 

allowing us to differentiate with respect to time.

It is preferable to use the strain energy per unit mass than the strain 
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energy per unit area because mass is conserved, whereas area changes. 

If 𝑄𝑄 is the strain energy per unit mass and ρ is the mass per unit area, 

we can write
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the thickness of a thin shell, but this is rather unsatisfactory for gridshells or ribbed
shells.

The rate of work being absorbed, eq. (68), becomes

W =
∫

A

((
σαβ −mηαbβ

η +∇ηmηαβ + cαβ
)

γαβ +mαβ βαβ +mα
·

β
· χβ ·

α
·
β

χ
)

dA .

(73)

7 Elastic surfaces

We define an elastic surface as any surface whose strain energy per unit mass is a
function of aαβ , bαβ and Γλ

αβ . Such structures include soap films, fabric structures,
shells and gridshells, as well as surfaces which minimize the Willmore energy, that is
the surface integral of H2 −K (Velimirović et al., 2011; Williams, 1987).

For an elastic surface the virtual work formulation becomes identical to the mini-
mization of the sum of the strain energy of the structure and the potential energy of
the loads, assuming that they admit a potential. The same results could be obtained
using the calculus of variations, which would need exactly the same geometric
relationships and how they change under an increment of displacement, or better a
velocity allowing us to differentiate with respect to time.

It is preferable to use the strain energy per unit mass than the strain energy per
unit area because mass is conserved, whereas area changes. If Q is the strain energy
per unit mass and ρ is the mass per unit area, we can write
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in which

∂
∂ t

(
ρ
√

a
)
= 0 (75)

1
ρ

∂ρ
∂ t

=− 1√
a

∂
√

a
∂ t

=−aαβ γαβ . (76)

7.1 Surfaces with constant mean curvature, including minimal surfaces

The strain energy per unit mass of a surface with a constant isotropic surface tension
T is

Q =
T
ρ
. (77)

in which
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the thickness of a thin shell, but this is rather unsatisfactory for gridshells or ribbed
shells.

The rate of work being absorbed, eq. (68), becomes

W =
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7 Elastic surfaces

We define an elastic surface as any surface whose strain energy per unit mass is a
function of aαβ , bαβ and Γλ

αβ . Such structures include soap films, fabric structures,
shells and gridshells, as well as surfaces which minimize the Willmore energy, that is
the surface integral of H2 −K (Velimirović et al., 2011; Williams, 1987).

For an elastic surface the virtual work formulation becomes identical to the mini-
mization of the sum of the strain energy of the structure and the potential energy of
the loads, assuming that they admit a potential. The same results could be obtained
using the calculus of variations, which would need exactly the same geometric
relationships and how they change under an increment of displacement, or better a
velocity allowing us to differentiate with respect to time.

It is preferable to use the strain energy per unit mass than the strain energy per
unit area because mass is conserved, whereas area changes. If Q is the strain energy
per unit mass and ρ is the mass per unit area, we can write
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7.1 Surfaces with constant mean curvature, including minimal surfaces

The strain energy per unit mass of a surface with a constant isotropic surface tension
T is

Q =
T
ρ
. (77)

7.1 Surfaces with constant mean curvature, including 
minimal surfaces 

The strain energy per unit mass of a surface with a constant isotropic 

surface tension T is
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the thickness of a thin shell, but this is rather unsatisfactory for gridshells or ribbed
shells.

The rate of work being absorbed, eq. (68), becomes
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σαβ −mηαbβ

η +∇ηmηαβ + cαβ
)

γαβ +mαβ βαβ +mα
·

β
· χβ ·

α
·
β

χ
)

dA .

(73)

7 Elastic surfaces

We define an elastic surface as any surface whose strain energy per unit mass is a
function of aαβ , bαβ and Γλ

αβ . Such structures include soap films, fabric structures,
shells and gridshells, as well as surfaces which minimize the Willmore energy, that is
the surface integral of H2 −K (Velimirović et al., 2011; Williams, 1987).

For an elastic surface the virtual work formulation becomes identical to the mini-
mization of the sum of the strain energy of the structure and the potential energy of
the loads, assuming that they admit a potential. The same results could be obtained
using the calculus of variations, which would need exactly the same geometric
relationships and how they change under an increment of displacement, or better a
velocity allowing us to differentiate with respect to time.

It is preferable to use the strain energy per unit mass than the strain energy per
unit area because mass is conserved, whereas area changes. If Q is the strain energy
per unit mass and ρ is the mass per unit area, we can write

ρ
∂Q
∂ t

= (σ+∇ ·m+ c) · ·γ+m · · ·β

=
(

σαβ −mηαbβ
η +∇ηmηαβ + cαβ

) 1
2

∂aαβ

∂ t

+mαβ ∂bαβ

∂ t
+mα

·
β
· χ

∂Γχ
αβ

∂ t

(74)

in which

∂
∂ t

(
ρ
√

a
)
= 0 (75)

1
ρ

∂ρ
∂ t

=− 1√
a

∂
√

a
∂ t

=−aαβ γαβ . (76)

7.1 Surfaces with constant mean curvature, including minimal surfaces

The strain energy per unit mass of a surface with a constant isotropic surface tension
T is

Q =
T
ρ
. (77)

Thus 𝑄𝑄 does not depend upon 𝑏𝑏αβ or 
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5.3 Rate of bending, or rate of change of normal and geodesic curvature

In order to find how the coefficients of the second fundamental form and the
Christoffel symbols vary with time we need

∂aα,β

∂ t
=

∂
∂ t

(
bαβ n+Γλ

αβ aλ

)

=
∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ +bαβ

∂n
∂ t

+Γλ
αβ u,λ

= u,αβ = aα ·
(

aλ u,λ

)
,β
−aα ·aλ

,β u,λ = aα ·
(

aλ u,λ

)
,β
+Γλ

αβ u,λ

=
(
aβ aα

)
· ·∇∇u+Γλ

αβ u,λ

(48)

and
(
aβ aα

)
· ·∇∇u =

(
aβ aα

)
· ·∇(γ +ω −nn ·ω)

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ n ·ω

=
(
aβ aα

)
· ·∇(γ +ω)+bαβ

∂n
∂ t

(49)

which mean that

∂bαβ

∂ t
n+

∂Γλ
αβ

∂ t
aλ =

(
aβ aα

)
· ·∇∇u−bαβ

∂n
∂ t

=
(
aβ aα

)
· ·∇(γ+ω) (50)

∂bαβ

∂ t
=
(
aβ aαn

)
· · ·∇(γ+ω) (51)

∂Γλ
αβ

∂ t
=
(

aβ aαaλ
)
· · ·∇(γ+ω) . (52)

Equation (51) tells us about the rate of change of normal curvature, while eq. (52)
tells us about the rate of change of geodesic curvature. Equation (52) leads to the

somewhat surprising conclusion that
∂Γλ

αβ

∂ t
are the components of a tensor, even

though Γλ
αβ are not, although in the general theory of relativity the derivatives of

the Christoffel symbols lead to the components of the Riemann–Christoffel tensor.

Differentiating eq. (23) with respect to time,

∂Γλ
αβ

∂ t
=

1
2

∂aαβ

∂ t

(
aηα,β +aβη ,α −aαβ ,η

)
+

1
2

aλη
(

∂aβη ,α

∂ t
+

∂aηα,β

∂ t
−

∂aαβ ,η

∂ t

)

=−2γληaµηΓµ
αβ +aλη




∇β γηα + γχαΓχ
ηβ + γηχΓχ

αβ
+∇αγβη + γχηΓχ

αβ + γβ χΓχ
ηα

−∇ηγαβ − γχβ Γχ
αη − γαχΓχ

βη




= aλη (∇β γηα +∇αγβη −∇ηγαβ
)

(53)

 and so the moments are zero 

giving

The use of virtual work for the formfinding of fabric, shell and gridshell structures

Thus Q does not depend upon bαβ or Γλ
αβ and so the moments are zero giving

σ= σ αβ aαaβ = σβαaαaβ (78)

and eq. (74) becomes

∂
∂ t

(
T
ρ

)
=− T

ρ2
∂ρ
∂ t

=
T
ρ

aαβ γαβ =
1
ρ

σαβ γαβ . (79)

Thus the membrane stress

σαβ = T aαβ

σ= T J
(80)

corresponding to the uniform surface tension.

J = aαβ aαaβ (81)

is the unit tensor on the surface.

Figure 2: Surface with constant mean curvature on a plane elliptical boundary

The surface in fig. 2 was found using dynamic relaxation (Day, 1965). The boundary
is a plane ellipse and the surface has the minimum surface area for a given enclosed
volume, like an inflated soap film. Dynamic relaxation was also used to find the
pressure necessary to enclose a fixed volume. The pressure cannot be kept constant
for a surface such as this because the pressure decreases with increasing volume,
once it is inflated beyond a certain point. It was found necessary to damp the
pressure change with both the rates of change of pressure and volume.
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Figure 2: Surface with constant mean curvature on a plane elliptical 
boundary.

The surface in figure 2 was found using dynamic relaxation (Day, 1965). 

The boundary is a plane ellipse and the surface has the minimum surfa-

ce area for a given enclosed volume, like an inflated soap film. Dynamic 

relaxation was also used to find the pressure necessary to enclose a 

fixed volume. The pressure cannot be kept constant for a surface such 

as this because the pressure decreases with increasing volume, once 

it is inflated beyond a certain point. It was found necessary to damp the 

pressure change with both the rates of change of pressure and volume.

7.2 Surfaces which minimize the integral of the mean 
curvature subject to a constant volume

If we assume that the strain energy per unit mass is equal to the mean 

curvature divided by the density, then
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7.2 Surfaces which minimize the integral of the mean curvature subject
to a constant volume

If we assume that the strain energy per unit mass is equal to the mean curvature
divided by the density, then

Q =
H
ρ

=
aαβ bαβ

2ρ
(82)

and

ρ
∂Q
∂ t

=
1
2

∂aαβ

∂ t
bαβ +

1
2

aαβ ∂bαβ

∂ t
− H

ρ
∂ρ
∂ t

= γαβ (Haαβ −bαβ
)
+

1
2

aαβ ∂bαβ

∂ t

=
(

Haαβ −bαβ
) 1

2
∂aαβ

∂ t
+

1
2

aαβ ∂bαβ

∂ t
.

(83)

Then comparison with eq. (74) shows that

mαβ =
1
2

aαβ . (84)

Assuming that the loading couples, c are zero, the equations of equilibrium of
moments show that

σαβ = σβα (85)
σα = 0 (86)

so that
σαβ −mηαbβ

η = Haαβ −bαβ (87)

and therefore

σαβ = Haαβ −bαβ +
1
2

aηαbβ
η

=
1
2

(
bη

ηaαβ −bαβ
)
.

(88)

or
σ= HJ− b

2
=

ε ·b ·ε
2

. (89)

We therefore have

∇ασαβ =
1
2

(
∇αbη

ηaαβ −∇αbαβ
)
=

1
2
(
∇αbη

η −∇ηbη
α
)

aαβ = 0 (90)

from the Codazzi-Mainardi equations, eq. (25), and

σαβ bαβ =
1
2

(
bη

ηaαβ −bαβ
)

bαβ

=
1
2

(
bα

αbβ
β −bα

β bβ
α

)

= K .

(91)

and
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Figure 3: Surface with constant positive Gaussian curvature on a plane 
elliptical boundary.
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Figure 2: Surface with constant mean curvature on a plane elliptical 
boundary.

The surface in figure 2 was found using dynamic relaxation (Day, 1965). 

The boundary is a plane ellipse and the surface has the minimum surfa-

ce area for a given enclosed volume, like an inflated soap film. Dynamic 

relaxation was also used to find the pressure necessary to enclose a 

fixed volume. The pressure cannot be kept constant for a surface such 

as this because the pressure decreases with increasing volume, once 

it is inflated beyond a certain point. It was found necessary to damp the 

pressure change with both the rates of change of pressure and volume.

7.2 Surfaces which minimize the integral of the mean 
curvature subject to a constant volume

If we assume that the strain energy per unit mass is equal to the mean 

curvature divided by the density, then
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Figure 3: Surface with constant positive Gaussian curvature on a plane 
elliptical boundary.
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Thus the tangential components of load
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Figure 3: Surface with constant positive Gaussian curvature on a plane elliptical boundary

Thus the tangential components of load

pα = 0 (92)

are zero and the normal component of load,

p =−K (93)

where K is the Gaussian curvature.

Thus if we minimize, or possibly maximize, the surface integral of the mean curvature
subject to the enclosed volume being constant we find that we need an internal, or
possibly external pressure, which must be a constant and therefore the Gaussian
curvature is also constant. One would imagine that this simple fact must have been
known before.

The moments in the surface do not affect equilibrium, and can therefore be dispensed
with and are purely a phantom, we only need the membrane stresses for equilibrium.

The mean membrane stress,

1
2

aαβ σαβ =
1
2

bη
η = H (94)

and therefore for a sphere with an outwards pointing normal the mean stress is
compressive, and we need an external pressure. On the other hand if we choose
to have the normal pointing inwards we have a tensile mean stress and an internal
pressure.

Figure 3 show a surface of constant positive Gaussian curvature on the same plane
elliptic boundary as that in fig. 2. The numerical procedure uses flat triangular
facets and the stress in the surface is represented by forces in each fold proportional
to the angle of the fold from flat. Those familiar with the Airy stress function
(Timoshenko, 1934) will realize that this is equivalent to the shell being its own
stress function, but with no projection onto the plane. The equilibrium shape was
again found using dynamic relaxation. Note that this procedure only controls the

are zero and the normal component of load,
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Thus if we minimize, or possibly maximize, the surface integral of the mean curvature
subject to the enclosed volume being constant we find that we need an internal, or
possibly external pressure, which must be a constant and therefore the Gaussian
curvature is also constant. One would imagine that this simple fact must have been
known before.

The moments in the surface do not affect equilibrium, and can therefore be dispensed
with and are purely a phantom, we only need the membrane stresses for equilibrium.

The mean membrane stress,
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and therefore for a sphere with an outwards pointing normal the mean stress is
compressive, and we need an external pressure. On the other hand if we choose
to have the normal pointing inwards we have a tensile mean stress and an internal
pressure.

Figure 3 show a surface of constant positive Gaussian curvature on the same plane
elliptic boundary as that in fig. 2. The numerical procedure uses flat triangular
facets and the stress in the surface is represented by forces in each fold proportional
to the angle of the fold from flat. Those familiar with the Airy stress function
(Timoshenko, 1934) will realize that this is equivalent to the shell being its own
stress function, but with no projection onto the plane. The equilibrium shape was
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moving the nodes. This technique is commonly used to find geodesics on a surface
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directions coincide. That means we could construct a gridshell structure with an
orthogonal quadrilateral mesh with no bending moments and flat panels, subject to
a pressure loading. In this section we shall relax the pressure loading requirement,
because we are only really interested in the state of stress and the curvature. We
can also relax the condition on the mesh being orthogonal.

We can write any state of membrane stress as

σ= Axx+Byy
x ·x = 1

y ·y = 1

σαβ = Axαxβ +Byαyβ

(95)

corresponding to two monoaxial stresses of magnitude A and B in the directions
of the unit vectors x and y tangent to the surface. There are 3 values of the
components σ11, σ12 = σ 21 and σ22, but 4 quantities A, B and the directions x
and y, see fig. 4. We therefore need 1 further condition, often taken as x ·y = 0,
which leads to the principal stresses and their directions, but we will not make that
assumption at this juncture.

Now let us postulate that we can write the normal curvature tensor b as

b =C (ε ·x)(ε ·x)+D(ε ·y)(ε ·y)

bαβ = εαλ εβ µ

(
Cxλ xµ +Dyλ yµ

) (96)

with the same unit vectors x and y. The reason for the ε in eq. (96) is that we want
the stresses to coincide with the directions of ‘folding’, rather than the directions of
curvature.

Then if σ and b are known we have 6 equations in the unknowns A, B, C, D and the
directions of x and y. These equations can be solved by introducing the orthogonal
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Thus the tangential components of load

pα = 0 (92)

are zero and the normal component of load,

p =−K (93)

where K is the Gaussian curvature.

Thus if we minimize, or possibly maximize, the surface integral of the mean curvature
subject to the enclosed volume being constant we find that we need an internal, or
possibly external pressure, which must be a constant and therefore the Gaussian
curvature is also constant. One would imagine that this simple fact must have been
known before.

The moments in the surface do not affect equilibrium, and can therefore be dispensed
with and are purely a phantom, we only need the membrane stresses for equilibrium.

The mean membrane stress,

1
2

aαβ σαβ =
1
2

bη
η = H (94)

and therefore for a sphere with an outwards pointing normal the mean stress is
compressive, and we need an external pressure. On the other hand if we choose
to have the normal pointing inwards we have a tensile mean stress and an internal
pressure.

Figure 3 show a surface of constant positive Gaussian curvature on the same plane
elliptic boundary as that in fig. 2. The numerical procedure uses flat triangular
facets and the stress in the surface is represented by forces in each fold proportional
to the angle of the fold from flat. Those familiar with the Airy stress function
(Timoshenko, 1934) will realize that this is equivalent to the shell being its own
stress function, but with no projection onto the plane. The equilibrium shape was
again found using dynamic relaxation. Note that this procedure only controls the
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corresponding to two monoaxial stresses of magnitude A and B in the directions
of the unit vectors x and y tangent to the surface. There are 3 values of the
components σ11, σ12 = σ 21 and σ22, but 4 quantities A, B and the directions x
and y, see fig. 4. We therefore need 1 further condition, often taken as x ·y = 0,
which leads to the principal stresses and their directions, but we will not make that
assumption at this juncture.

Now let us postulate that we can write the normal curvature tensor b as

b =C (ε ·x)(ε ·x)+D(ε ·y)(ε ·y)

bαβ = εαλ εβ µ

(
Cxλ xµ +Dyλ yµ

) (96)

with the same unit vectors x and y. The reason for the ε in eq. (96) is that we want
the stresses to coincide with the directions of ‘folding’, rather than the directions of
curvature.

Then if σ and b are known we have 6 equations in the unknowns A, B, C, D and the
directions of x and y. These equations can be solved by introducing the orthogonal
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Figure 4: Monoaxial stress state of magnitude A and B acting in the 
directions of unit vectors x and y tangent to the surface on a small 
element of shell.
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unit vectors X and Y such the

x = Xcos
θ
2
+Ysin

θ
2

y = Xsin
θ
2
+Ycos

θ
2

X ·X = 1

X ·Y = 0

Y ·Y = 1

(97)

and substituting into eqs. (95) and (96) to give

σ=
(A+B)

2
(XX+YY+(XY+YX)sinθ)

+
(A−B)

2
(XX−YY)cosθ (98)

−ε ·b ·ε=
(C+D)

2
(XX+YY+(XY+YX)sinθ)

+
(C−D)

2
(XX−YY)cosθ . (99)

Hence

Hσ+Sε ·b ·ε=

(
H
(A−B)

2
−S

(C−D)

2

)
cosθ (XX−YY) (100)

where S is the mean stress. We can find X and Y by observing that (X+Y) and
(X−Y) are the eigenvectors of (Hσ+Sε ·b ·ε). Having found X and Y we can
find all the other unknowns and further study shows that |cosθ | ≤ 1 and |sinθ | ≤ 1.
Thus it would appear that there is always a solution, except for the case when H
and S are both zero.
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where S is the mean stress. We can fi nd X and Y by observing that (X 
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8.2 Orthogonal directions 
A special case of the previous section is when the curvature and mem-

brane stress are such that they share the same principal directions, so 

that x and y are orthogonal.

Figure 5: Plan and cross-section of shell with coincident principal 
membrane stress and principal curvature directions, so that x and y are 
orthogonal.

Then we can generalize the state of stress in eq. (89) to
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Figure 4: Monoaxial stress state of magnitude A and B acting in the 
directions of unit vectors x and y tangent to the surface on a small 
element of shell.
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unit vectors X and Y such the

x = Xcos
θ
2
+Ysin

θ
2

y = Xsin
θ
2
+Ycos

θ
2

X ·X = 1

X ·Y = 0

Y ·Y = 1

(97)

and substituting into eqs. (95) and (96) to give

σ=
(A+B)

2
(XX+YY+(XY+YX)sinθ)

+
(A−B)

2
(XX−YY)cosθ (98)

−ε ·b ·ε=
(C+D)

2
(XX+YY+(XY+YX)sinθ)

+
(C−D)

2
(XX−YY)cosθ . (99)

Hence

Hσ+Sε ·b ·ε=

(
H
(A−B)

2
−S

(C−D)

2

)
cosθ (XX−YY) (100)

where S is the mean stress. We can find X and Y by observing that (X+Y) and
(X−Y) are the eigenvectors of (Hσ+Sε ·b ·ε). Having found X and Y we can
find all the other unknowns and further study shows that |cosθ | ≤ 1 and |sinθ | ≤ 1.
Thus it would appear that there is always a solution, except for the case when H
and S are both zero.
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in the plane of the surface and

(∇ ·σ+p) ·n = 2φH +2ψK + p = 0 (103)

normal to the surface.

Let us assume that we have a load corresponding to a known weight per unit area
w, then

p = pβ aβ + pn =−wk (104)

where k is a unit vector in the z direction. The equilibrium equations are then

∇φ +∇ψ · ε ·b · ε = w∇z (105)
2φH +2ψK = wk ·n . (106)

The equilibrium equations in the plane of the surface, eq. (105), have one possible
very simple solution.

ψ = constant (107)
φ = φ (z) (108)

w = w(z) =
dφ
dz

(109)

where φ (z) is a function we can choose. Having done this the equilibrium equation
normal to the surface eq. (106) can be used to find the geometry of the surface, in
exactly the same way as in sections 7.1 and 7.2. Aish et al. (2015) consider the
special case ψ = 0.

If we assume that
φ
w
=−L = constant (110)

so that the isotropic part of the membrane stress is proportional to the weight per
unit area, then the isotropic stress and weight per unit area reduce with height,

φ = φ0e−(z−z0)/L . (111)

Figure 5 shows a plan and cross-section of a shell corresponding to this isotropic
stress and loading state plus the stress associated with a constant ψ . It can be seen
that there is a concentration of vertical stress at the centre support which could
not have been obtained with the isotropic stress state on its own. The high vertical
stress is associated with ψ and the large curvature in the horizontal plane.

Having defined the surface we need to construct the orthogonal grid of principal
curvature directions, which coincide with the directions of the principal membrane
stresses. This is not a trivial task, particularly in ensuring that the variation in
spacing of the lines is satisfactory (Sun et al., 2016).

normal to the surface.

Let us assume that we have a load corresponding to a known weight 

per unit area 

The use of virtual work for the formfinding of fabric, shell and gridshell structures

in the plane of the surface and

(∇ ·σ+p) ·n = 2φH +2ψK + p = 0 (103)

normal to the surface.

Let us assume that we have a load corresponding to a known weight per unit area
w, then

p = pβ aβ + pn =−wk (104)

where k is a unit vector in the z direction. The equilibrium equations are then

∇φ +∇ψ · ε ·b · ε = w∇z (105)
2φH +2ψK = wk ·n . (106)

The equilibrium equations in the plane of the surface, eq. (105), have one possible
very simple solution.

ψ = constant (107)
φ = φ (z) (108)

w = w(z) =
dφ
dz

(109)

where φ (z) is a function we can choose. Having done this the equilibrium equation
normal to the surface eq. (106) can be used to find the geometry of the surface, in
exactly the same way as in sections 7.1 and 7.2. Aish et al. (2015) consider the
special case ψ = 0.

If we assume that
φ
w
=−L = constant (110)

so that the isotropic part of the membrane stress is proportional to the weight per
unit area, then the isotropic stress and weight per unit area reduce with height,

φ = φ0e−(z−z0)/L . (111)

Figure 5 shows a plan and cross-section of a shell corresponding to this isotropic
stress and loading state plus the stress associated with a constant ψ . It can be seen
that there is a concentration of vertical stress at the centre support which could
not have been obtained with the isotropic stress state on its own. The high vertical
stress is associated with ψ and the large curvature in the horizontal plane.

Having defined the surface we need to construct the orthogonal grid of principal
curvature directions, which coincide with the directions of the principal membrane
stresses. This is not a trivial task, particularly in ensuring that the variation in
spacing of the lines is satisfactory (Sun et al., 2016).

, then

The use of virtual work for the formfinding of fabric, shell and gridshell structures

in the plane of the surface and

(∇ ·σ+p) ·n = 2φH +2ψK + p = 0 (103)

normal to the surface.

Let us assume that we have a load corresponding to a known weight per unit area
w, then

p = pβ aβ + pn =−wk (104)

where k is a unit vector in the z direction. The equilibrium equations are then

∇φ +∇ψ · ε ·b · ε = w∇z (105)
2φH +2ψK = wk ·n . (106)

The equilibrium equations in the plane of the surface, eq. (105), have one possible
very simple solution.

ψ = constant (107)
φ = φ (z) (108)

w = w(z) =
dφ
dz

(109)

where φ (z) is a function we can choose. Having done this the equilibrium equation
normal to the surface eq. (106) can be used to find the geometry of the surface, in
exactly the same way as in sections 7.1 and 7.2. Aish et al. (2015) consider the
special case ψ = 0.

If we assume that
φ
w
=−L = constant (110)

so that the isotropic part of the membrane stress is proportional to the weight per
unit area, then the isotropic stress and weight per unit area reduce with height,

φ = φ0e−(z−z0)/L . (111)

Figure 5 shows a plan and cross-section of a shell corresponding to this isotropic
stress and loading state plus the stress associated with a constant ψ . It can be seen
that there is a concentration of vertical stress at the centre support which could
not have been obtained with the isotropic stress state on its own. The high vertical
stress is associated with ψ and the large curvature in the horizontal plane.

Having defined the surface we need to construct the orthogonal grid of principal
curvature directions, which coincide with the directions of the principal membrane
stresses. This is not a trivial task, particularly in ensuring that the variation in
spacing of the lines is satisfactory (Sun et al., 2016).

where k is a unit vector in the 𝑧𝑧 direction. The equilibrium equations are 

then

The use of virtual work for the formfinding of fabric, shell and gridshell structures

in the plane of the surface and

(∇ ·σ+p) ·n = 2φH +2ψK + p = 0 (103)

normal to the surface.

Let us assume that we have a load corresponding to a known weight per unit area
w, then

p = pβ aβ + pn =−wk (104)

where k is a unit vector in the z direction. The equilibrium equations are then

∇φ +∇ψ · ε ·b · ε = w∇z (105)
2φH +2ψK = wk ·n . (106)

The equilibrium equations in the plane of the surface, eq. (105), have one possible
very simple solution.

ψ = constant (107)
φ = φ (z) (108)

w = w(z) =
dφ
dz

(109)

where φ (z) is a function we can choose. Having done this the equilibrium equation
normal to the surface eq. (106) can be used to find the geometry of the surface, in
exactly the same way as in sections 7.1 and 7.2. Aish et al. (2015) consider the
special case ψ = 0.

If we assume that
φ
w
=−L = constant (110)

so that the isotropic part of the membrane stress is proportional to the weight per
unit area, then the isotropic stress and weight per unit area reduce with height,

φ = φ0e−(z−z0)/L . (111)

Figure 5 shows a plan and cross-section of a shell corresponding to this isotropic
stress and loading state plus the stress associated with a constant ψ . It can be seen
that there is a concentration of vertical stress at the centre support which could
not have been obtained with the isotropic stress state on its own. The high vertical
stress is associated with ψ and the large curvature in the horizontal plane.

Having defined the surface we need to construct the orthogonal grid of principal
curvature directions, which coincide with the directions of the principal membrane
stresses. This is not a trivial task, particularly in ensuring that the variation in
spacing of the lines is satisfactory (Sun et al., 2016).

The equilibrium equations in the plane of the surface, eq. (105), have one 

possible very simple solution.

The use of virtual work for the formfinding of fabric, shell and gridshell structures

in the plane of the surface and

(∇ ·σ+p) ·n = 2φH +2ψK + p = 0 (103)

normal to the surface.

Let us assume that we have a load corresponding to a known weight per unit area
w, then

p = pβ aβ + pn =−wk (104)

where k is a unit vector in the z direction. The equilibrium equations are then

∇φ +∇ψ · ε ·b · ε = w∇z (105)
2φH +2ψK = wk ·n . (106)

The equilibrium equations in the plane of the surface, eq. (105), have one possible
very simple solution.

ψ = constant (107)
φ = φ (z) (108)

w = w(z) =
dφ
dz

(109)

where φ (z) is a function we can choose. Having done this the equilibrium equation
normal to the surface eq. (106) can be used to find the geometry of the surface, in
exactly the same way as in sections 7.1 and 7.2. Aish et al. (2015) consider the
special case ψ = 0.

If we assume that
φ
w
=−L = constant (110)

so that the isotropic part of the membrane stress is proportional to the weight per
unit area, then the isotropic stress and weight per unit area reduce with height,

φ = φ0e−(z−z0)/L . (111)

Figure 5 shows a plan and cross-section of a shell corresponding to this isotropic
stress and loading state plus the stress associated with a constant ψ . It can be seen
that there is a concentration of vertical stress at the centre support which could
not have been obtained with the isotropic stress state on its own. The high vertical
stress is associated with ψ and the large curvature in the horizontal plane.

Having defined the surface we need to construct the orthogonal grid of principal
curvature directions, which coincide with the directions of the principal membrane
stresses. This is not a trivial task, particularly in ensuring that the variation in
spacing of the lines is satisfactory (Sun et al., 2016).

where 

Emil Adiels, Mats Ander, Erica Hörteborn, Jens Olsson, Karl-Gunnar Olsson, Alexander Sehlström,
Paul Shepherd, Chris Williams

8.2 Orthogonal directions

A special case of the previous section is when the curvature and membrane stress are
such that they share the same principal directions, so that x and y are orthogonal.

Figure 5: Plan and cross-section of shell with coincident principal membrane stress and
principal curvature directions

Then we can generalize the state of stress in eq. (89) to

σ= φJ+ψε ·b ·ε
σαβ = φaαβ −ψεαλ εβ µbλ µ

(101)

where φ and ψ are scalar fields.

Using the Codazzi-Mainardi equations, eq. (25), the equilibrium equations become

(∇ ·σ+p) ·J = ∇φ +∇ψ ·ε ·b ·ε+p ·J = 0 (102)(𝑧𝑧) is a function we can choose. Having done this the equili-

brium equation normal to the surface eq. (106) can be used to fi nd the 

geometry of the surface, in exactly the same way as in sections 7.1 and 

7.2. Aish et al. (2015) consider the special case ψ = 0.

If we assume that

The use of virtual work for the formfinding of fabric, shell and gridshell structures

in the plane of the surface and

(∇ ·σ+p) ·n = 2φH +2ψK + p = 0 (103)

normal to the surface.

Let us assume that we have a load corresponding to a known weight per unit area
w, then

p = pβ aβ + pn =−wk (104)

where k is a unit vector in the z direction. The equilibrium equations are then

∇φ +∇ψ · ε ·b · ε = w∇z (105)
2φH +2ψK = wk ·n . (106)

The equilibrium equations in the plane of the surface, eq. (105), have one possible
very simple solution.

ψ = constant (107)
φ = φ (z) (108)

w = w(z) =
dφ
dz

(109)

where φ (z) is a function we can choose. Having done this the equilibrium equation
normal to the surface eq. (106) can be used to find the geometry of the surface, in
exactly the same way as in sections 7.1 and 7.2. Aish et al. (2015) consider the
special case ψ = 0.

If we assume that
φ
w
=−L = constant (110)

so that the isotropic part of the membrane stress is proportional to the weight per
unit area, then the isotropic stress and weight per unit area reduce with height,

φ = φ0e−(z−z0)/L . (111)

Figure 5 shows a plan and cross-section of a shell corresponding to this isotropic
stress and loading state plus the stress associated with a constant ψ . It can be seen
that there is a concentration of vertical stress at the centre support which could
not have been obtained with the isotropic stress state on its own. The high vertical
stress is associated with ψ and the large curvature in the horizontal plane.

Having defined the surface we need to construct the orthogonal grid of principal
curvature directions, which coincide with the directions of the principal membrane
stresses. This is not a trivial task, particularly in ensuring that the variation in
spacing of the lines is satisfactory (Sun et al., 2016).

so that the isotropic part of the membrane stress is proportional to the 

weight per unit area, then the isotropic stress and weight per unit area 

reduce with height,

The use of virtual work for the formfinding of fabric, shell and gridshell structures

in the plane of the surface and

(∇ ·σ+p) ·n = 2φH +2ψK + p = 0 (103)

normal to the surface.

Let us assume that we have a load corresponding to a known weight per unit area
w, then

p = pβ aβ + pn =−wk (104)

where k is a unit vector in the z direction. The equilibrium equations are then

∇φ +∇ψ · ε ·b · ε = w∇z (105)
2φH +2ψK = wk ·n . (106)

The equilibrium equations in the plane of the surface, eq. (105), have one possible
very simple solution.

ψ = constant (107)
φ = φ (z) (108)

w = w(z) =
dφ
dz

(109)

where φ (z) is a function we can choose. Having done this the equilibrium equation
normal to the surface eq. (106) can be used to find the geometry of the surface, in
exactly the same way as in sections 7.1 and 7.2. Aish et al. (2015) consider the
special case ψ = 0.

If we assume that
φ
w
=−L = constant (110)

so that the isotropic part of the membrane stress is proportional to the weight per
unit area, then the isotropic stress and weight per unit area reduce with height,

φ = φ0e−(z−z0)/L . (111)

Figure 5 shows a plan and cross-section of a shell corresponding to this isotropic
stress and loading state plus the stress associated with a constant ψ . It can be seen
that there is a concentration of vertical stress at the centre support which could
not have been obtained with the isotropic stress state on its own. The high vertical
stress is associated with ψ and the large curvature in the horizontal plane.

Having defined the surface we need to construct the orthogonal grid of principal
curvature directions, which coincide with the directions of the principal membrane
stresses. This is not a trivial task, particularly in ensuring that the variation in
spacing of the lines is satisfactory (Sun et al., 2016).

Figure 5 shows a plan and cross-section of a shell corresponding to 

this isotropic stress and loading state plus the stress associated with a 
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constant ψ. It can be seen that there is a concentration of vertical stress 

at the centre support which could not have been obtained with the 

isotropic stress state on its own. The high vertical stress is associated 

with ψ and the large curvature in the horizontal plane.

Having defined the surface we need to construct the orthogonal grid 

of principal curvature directions, which coincide with the directions of 

the principal membrane stresses. This is not a trivial task, particularly in 

ensuring that the variation in spacing of the lines is satisfactory (Sun et 

al., 2016).

9. Conclusion 

We have derived the shell equilibrium equations using virtual work, which 

enables many formfinding methods to be reformulated as a minimization 

using the calculus of variations. This method of deriving the equilibrium 

equations naturally introduces the concept of geodesic bending mo-

ments for the analysis of gridshells and kitchen sieves via the Christoffel 

symbols, which become the components of a tensor upon differentiation 

with respect to time.

We have also demonstrated that minimizing the surface integral of 

the mean curvature subject to a constraint on enclosed volume gives 

a surface of constant Gaussian curvature, although one would imagine 

that this simple fact must have been known before.

These studies lead us to examine the conditions under which principal 

stress and principal curvature coincide and how this can be incorporated 

into a formfinding process.

Some of the ideas introduced in this paper could lead to further 

numerical studies and practical application.
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(∇ ·σ+p) ·n = 2φH +2ψK + p = 0 (103)

normal to the surface.

Let us assume that we have a load corresponding to a known weight per unit area
w, then

p = pβ aβ + pn =−wk (104)

where k is a unit vector in the z direction. The equilibrium equations are then

∇φ +∇ψ · ε ·b · ε = w∇z (105)
2φH +2ψK = wk ·n . (106)

The equilibrium equations in the plane of the surface, eq. (105), have one possible
very simple solution.

ψ = constant (107)
φ = φ (z) (108)

w = w(z) =
dφ
dz

(109)

where φ (z) is a function we can choose. Having done this the equilibrium equation
normal to the surface eq. (106) can be used to find the geometry of the surface, in
exactly the same way as in sections 7.1 and 7.2. Aish et al. (2015) consider the
special case ψ = 0.

If we assume that
φ
w
=−L = constant (110)

so that the isotropic part of the membrane stress is proportional to the weight per
unit area, then the isotropic stress and weight per unit area reduce with height,

φ = φ0e−(z−z0)/L . (111)

Figure 5 shows a plan and cross-section of a shell corresponding to this isotropic
stress and loading state plus the stress associated with a constant ψ . It can be seen
that there is a concentration of vertical stress at the centre support which could
not have been obtained with the isotropic stress state on its own. The high vertical
stress is associated with ψ and the large curvature in the horizontal plane.

Having defined the surface we need to construct the orthogonal grid of principal
curvature directions, which coincide with the directions of the principal membrane
stresses. This is not a trivial task, particularly in ensuring that the variation in
spacing of the lines is satisfactory (Sun et al., 2016).
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8.2 Orthogonal directions

A special case of the previous section is when the curvature and membrane stress are
such that they share the same principal directions, so that x and y are orthogonal.

Figure 5: Plan and cross-section of shell with coincident principal membrane stress and
principal curvature directions

Then we can generalize the state of stress in eq. (89) to

σ= φJ+ψε ·b ·ε
σαβ = φaαβ −ψεαλ εβ µbλ µ

(101)

where φ and ψ are scalar fields.
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constant ψ. It can be seen that there is a concentration of vertical stress 

at the centre support which could not have been obtained with the 

isotropic stress state on its own. The high vertical stress is associated 

with ψ and the large curvature in the horizontal plane.

Having defined the surface we need to construct the orthogonal grid 

of principal curvature directions, which coincide with the directions of 

the principal membrane stresses. This is not a trivial task, particularly in 

ensuring that the variation in spacing of the lines is satisfactory (Sun et 

al., 2016).

9. Conclusion 

We have derived the shell equilibrium equations using virtual work, which 

enables many formfinding methods to be reformulated as a minimization 

using the calculus of variations. This method of deriving the equilibrium 

equations naturally introduces the concept of geodesic bending mo-

ments for the analysis of gridshells and kitchen sieves via the Christoffel 

symbols, which become the components of a tensor upon differentiation 

with respect to time.

We have also demonstrated that minimizing the surface integral of 

the mean curvature subject to a constraint on enclosed volume gives 

a surface of constant Gaussian curvature, although one would imagine 

that this simple fact must have been known before.

These studies lead us to examine the conditions under which principal 

stress and principal curvature coincide and how this can be incorporated 

into a formfinding process.

Some of the ideas introduced in this paper could lead to further 

numerical studies and practical application.
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Abstract 
Buildings enclose and partition space and are built from assemblies 

of connected components. The many different forms of spatial and 

material partitioning and connectedness found within buildings can 

be represented by topology. This paper introduces the ‘‘Topologic’’ 

software library which integrates a number of architecturally relevant 

topological concepts into a unified application toolkit.

The goal of the Topologic toolkit is to support the creation of the 

lightest, most understandable conceptual models of architectural  

topology. The formal language of topology is well-matched to the data 

input requirements for applications such as energy simulation and 

structural analysis. In addition, the ease with which these lightweight 

topological models can be modified encourages design exploration and 

performance simulation at the conceptual design phase.

A challenging and equally interesting question is how can the formal 

language of topology be used to represent architectural concepts of 

space which have previously been described in rather speculative and 

subjective terms?

1. Introduction

This paper focusses on the conceptual issues surrounding the use of  

topology in architecture. It builds on previous research and proof of 

concept studies (Aish and Pratap 2013; Jabi 2014; Jabi et al. 2017). Other 

concurrently published papers describe in greater detail the implemen-

tation of the Topologic toolkit and specific applications of Topologic in 

building analysis and simulation (Jabi et al. 2018; Chatzivasileiadi, Lannon, 

et al. 2018; Wardhana et al. 2018).

Topology and in particular non-manifold topology are vast subjects that 

span algebra, geometry and set theory. It is beyond the scope of this paper 

to delve into the mathematical constructs and proofs that precisely define 

non-manifold topology. Topology has applications in biology, medicine, 

computer science, physics and robotics among others. Since the motiva-

tion for this research is to address the needs of architects and engineers, 

this research focusses on a specific application of non-manifold topology 

in the representation of significant spatial relationships in the design of 

buildings using computer-aided three-dimensional geometric processing.
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Abstract 
Buildings enclose and partition space and are built from assemblies 

of connected components. The many different forms of spatial and 

material partitioning and connectedness found within buildings can 

be represented by topology. This paper introduces the ‘‘Topologic’’ 

software library which integrates a number of architecturally relevant 

topological concepts into a unified application toolkit.

The goal of the Topologic toolkit is to support the creation of the 

lightest, most understandable conceptual models of architectural  

topology. The formal language of topology is well-matched to the data 

input requirements for applications such as energy simulation and 

structural analysis. In addition, the ease with which these lightweight 

topological models can be modified encourages design exploration and 

performance simulation at the conceptual design phase.

A challenging and equally interesting question is how can the formal 

language of topology be used to represent architectural concepts of 

space which have previously been described in rather speculative and 

subjective terms?

1. Introduction

This paper focusses on the conceptual issues surrounding the use of  

topology in architecture. It builds on previous research and proof of 

concept studies (Aish and Pratap 2013; Jabi 2014; Jabi et al. 2017). Other 

concurrently published papers describe in greater detail the implemen-

tation of the Topologic toolkit and specific applications of Topologic in 

building analysis and simulation (Jabi et al. 2018; Chatzivasileiadi, Lannon, 

et al. 2018; Wardhana et al. 2018).

Topology and in particular non-manifold topology are vast subjects that 

span algebra, geometry and set theory. It is beyond the scope of this paper 

to delve into the mathematical constructs and proofs that precisely define 

non-manifold topology. Topology has applications in biology, medicine, 

computer science, physics and robotics among others. Since the motiva-

tion for this research is to address the needs of architects and engineers, 

this research focusses on a specific application of non-manifold topology 

in the representation of significant spatial relationships in the design of 

buildings using computer-aided three-dimensional geometric processing.
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We can contrast this approach with more conventional representations 

of buildings as a collection of physical building components, typically 

modelled as manifold solids, as demonstrated by Building Information 

Modelling (BIM) applications. While BIM can be used to model the physical 

structure of the building, architecture is usually conceived in terms of an 

overall form and a series of related spatial enclosures (Curtis 1996). This 

spatial conceptualization is a key aspect of architectural design because 

it directly anticipates how the resulting building will be experienced. 

However, there are no practical design tools which support the creation 

of this spatial representation of architecture. Non-manifold topology 

is ideally suited to create a lightweight representation of a building as 

an external envelope and the subdivision of the enclosed space into 

separate spaces such as rooms, building storeys, cores, atria, etc. This 

lightweight representation also matches the input data requirements for 

important analysis and simulation applications, such as energy analysis, 

(Ellis, Torcellini, and Crawley 2008).

Conventional BIM applications, in contrast, do not explicitly model the 

enclosure of space. Although it might be possible to indirectly infer the 

enclosed spaces from the position of the physical building components, 

the fidelity of this representation depends on the precise connectivity of 

the bounding physical components, which cannot be relied upon. Even 

if this approach was viable, the level of detail of BIM models is often too 

complex for this type of analysis (Maile et al. 2013). Detailed BIM models 

are also cumbersome to change which may inhibit design exploration at 

the conceptual design stage.

One option might be to explore spatial modelling with existing solid 

modelling applications. However most of these applications are based 

on conventional manifold modelling techniques and do not support 

non-manifold topology. Indeed, many regular manifold modelling applica-

tions treat non-manifold topology as an error condition.

The objective of this research is to develop design tools based on 

precise topological principles but presented in ways which are under-

standable by architectural users who may have little previous experience 

of topology. The intention is that Topologic can be an effective interme-

diary between the abstract world of topology and the practical world of 

architecture and building engineering. 
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2. Background

2.1 The distinction between manifold and non-manifold 
Topology

In a previous paper (Aish and Pratap 2013) the following distinctions 

were made between manifold and non-manifold topology: 

“A 3D manifold body has a boundary that separates the enclosed 

solid from the external void. The boundary is composed of faces, 

which have (interior) solid material on one side and the (exterior) void 

on the other. In practical terms, a manifold body without internal voids 

can be machined out of a single block of material.”

“A non-manifold body also has a boundary [composed of faces] 

that separates the enclosed solid from the external void. Faces are 

either external [separating the interior (enclosed space) from the  

exterior (void)] or internal [separating one enclosed space (or cell) 

from another]. Furthermore, a non-manifold solid can have edges  

where more than two faces meet.”

2.2 The distinction between an idealized and a  
material model

One of the key themes which runs through this research is the distinc-

tion between an ‘‘idealised’’ model (of a building) and a ‘‘material’’ model 

of the physical building components. An early demonstration of this 

principle was made in 1997 (Aish 1997) and further developed (Hensen 

and Lamberts 2012).

Typically, idealised models are far less detailed than material models, 

therefore lighter and more easily edited. In addition, the different  

topological components of the idealised model (faces, edges, vertices) 

can be used as the ‘‘supports’’ for related building components in the 

material model. The connectivity of the components in the material 

model need not be directly modelled. Instead this connectivity can be 

represented through the topology of the idealised model.

2.3 Previous research
The case for non-manifold topology as well as its data structures and 

operators for geometric modelling were comprehensively set out by 

(Weiler 1986). In his introduction, Weiler explains why non-manifold 

topology is needed:
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‘‘A unified representation for combined wireframe, surface, and solid 

modelling by necessity requires a non-manifold representation, and is 

desirable since it makes it easy to use the most appropriate modelling 

form (or combination of forms) in a given application without requiring 

representation conversion as more information is added to the model.’’

Non-manifold topology allows an expansion of the regular Boolean 

operations of union, difference, and intersection. This expanded set  

includes operators such as merge, impose, and imprint. For a full  

description of non-manifold operators, please consult (Masuda 1993).

Representing space and its boundary was the focus of early research 

into BIM (Björk 1992; Chang and Woodbury 1997) and into ‘‘product  

modelling’’ (PDES/STEP) (Eastman and Siabiris 1995) and was proposed 

as an approach to the representation of geometry definition for input to 

Building Performance Simulation in the early design stages (Hui and  

Floriani 2007; Jabi 2016). However, this is not emphasised in modern 

BIM software where the building fabric is represented through manifold 

geometry and energy models from are derived from the fabric models.

Separately, non-manifold topology has been successfully used in the 

medical field to model complex organic structures with multiple internal 

zones (Nguyen 2011; Bronson, Levine, and Whitaker 2014).

Our focus is to create a schema which separates abstract topological 

concepts from domain specific and pragmatic concerns of architecture, 

engineering and construction. We maintain this separation, but also explore 

important connections: how buildings can be represented by topology and 

how a topological representation can potentially assist architectural users 

in the conceptualisation and analysis of new buildings. Therefore, our 

focus is not to create new non-manifold data structures, but rather to har-

ness existing geometry and topology kernels in an innovative way; indeed, 

it is completely feasible that the Topologic schema could be implemented 

with different data structures or with different kernels.

A comprehensive and systematic survey of topological modelling 

kernels, which support non-manifold topology, was carried out by the  

authors and published elsewhere (Chatzivasileiadi, Wardhana, et al. 

2018). Features and capabilities of kernels were compared in order to 

make an informed decision regarding what underlying kernel to use. 

Popular geometric kernels, such as CGAL, were discounted due to their 

inability to represent higher dimensional entities such as CellComplexes 

and for their more limited set of irregular Boolean operations.
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3. The Topologic toolkit
The core Topologic software is developed in C++ using Open Cascade 

(https://www.opencascade.com/) with specifi c C++/CLI variants deve-

loped for different visual data fl ow programming environments (Wardhana 

et al. 2018). Topologic integrates a number of architecturally relevant 

topological concepts into a unifi ed application toolkit. The features and 

applications of Topologic are summarised in Figure 1 and Figure 2.

Figure 1: The Topologic application toolkit summarised in eight key 
points. 
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Figure 2: Boolean Operations implemented in Topologic.
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3.1 Class hierarchy

The Topologic class hierarchy is designed to provide the architectural 

end-user with a conceptual understanding of topology. It also functions 

as an ‘‘end-user programmers’ interface” (EDPI). This user-oriented 

class hierarchy is distinct to the implementation-oriented class hierarchy 

within the Topologic core.

The Topologic superclass (Fig. 1, section 1) is abstract and imple-

ments constructors, properties and methods including a set of Boolean 

operators. These operators can be used with both manifold and non- 

manifold topology (Fig. 2). Topologic implements the expected concepts 

such as: Vertex, Edge, Wire, Face, Shell, and Cell. The interesting addi-

tional topological concepts are:

CellComplex which is a contiguous collection of Cells and is 

non-manifold.

Cluster which is a universal construct and allows any combination 

of topologies, including other ‘‘nested” Clusters, to be represented. A 

Cluster may represent non-contiguous, unrelated topologies of different 

dimensionalities.

3.2 Topological relationships
Topologic supports the building and querying of three different types of 

topological relationships (Fig. 1, section 2) 

Hierarchical relationships: between topological entities of different 

dimensionality. These relationships are created when a higher dimensional 

topology construct is composed from a collection of lower dimensional  

topologies. Subsequently the compositional relationships may be queried:

cellComplexes =  

 vertex.Edges.Wires.Faces.Shells.Cells. 

 CellComplexes;

Conversely, the decompositional relationships may also be queried, for 

example from higher dimensional topologies down to the constituent 

collections of lower dimensional topologies:

vertices = cellComplex.Vertices;
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or

vertices =

 cellComplex.Cells[n].Shells[n].Faces[n].Wires[n]. 

 Edges[n].Vertices;

Lateral relationships: these occur within a topological construct when 

the constituents share common topologies of a lower dimensionality.

adjacentCells = cellComplex.Cells[n].AdjacentCells;

adjacentFaces = shell.Faces[n].AdjacentFaces;

Connectivity: The path between two topologies can be queried.

path = topology.PathTo(otherTopology);

3.3 Idealised representations
Three different idealized models are considered (Fig. 1, section 4) 

Energy Analysis: a CellComplex can represent the partitioning and 

adjacency of spaces and thermal zones.

Structural Analysis: a Cluster can be used to represent a mixed-dimen-

sional model, with Faces representing structural slabs, blade columns 

and shear walls, Edges representing structural columns and Cells 

representing building cores.

Digital Fabrication Analysis: a CellComplex can represent the design 

envelope where topology can inform the shape and interface between 

deposited material (Jabi et al. 2017).

Circulation Analysis: a dual graph of a CellComplex can represent the 

connectedness of spaces.
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3.4 Cell as a space or as a solid

A Cell is defined as a closed collection of faces, bounding a 3D region. 

However, this same topology can represent two distinctly different 

application concepts: a Solid and a Space (Fig. 1, section 5). A Solid is 

interpreted as a single homogeneous region of material and its boundary 

defines where the material ends and the void begins. This is the inter-

pretation of the Cell as used in ‘‘Solid Modelling’’ and BIM applications.

A Space is a more abstract concept and may include an implied 

conceptual distinction between the material which is ‘‘contained’’ 

(represented by the enclosed 3D region of the Cell) and the ‘‘container’’ 

(represented by the Faces of the Cell). A Face may represent a 

boundary which is intended to be materialized with a defined thickness 

or may represent a ‘‘virtual’’ (e.g. adiabatic) barrier which is not intended 

to be materialized.

Solids and Spaces have exactly the same Cell topology, but the 

domain specific semantics and expected behaviour of this topology may 

be different. Consider a boolean ‘‘difference’’ operation representing 

a hole drilled into a Cell (as a solid). A new part of the Cell boundary 

would be created, but the result would still be a Cell. 

What result would the user expect if the same Cell represented a 

Space? Would the boolean ‘‘difference’’ only apply to a specific Face 

(as part of the Space’s boundary)? Would the user expect the boolean 

operation to create an internal boundary within the selected Face? 

Would the user expect this operation to destroy the integrity of the 

enclosure, changing the Cell into an open Shell?

This example helps to explain the difference between a material 

model (the Cell as a Solid) and an idealised model (the Cell as a 

Space). More generally this example demonstrates the need for the 

architectural users to customise the application of abstract topological 

concepts with the domain semantics which suits their purpose.

This relationship between application semantics and abstract con-

cepts works both ways. Sometimes more generally applicable concepts 

emerge by abstracting ideas from other specialist domains. For example, 

the concept of a topological Cell may have originated as an abstracted 

analogy of a biological cell, with similarities in terms of the homogeneity 

and continuity of the contained 3D region and the role of the cell wall as 

a closed container with selective permeability (Fig. 3).
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Figure 3: The cell wall as a separator and as a connector, in biology and 
in architecture  (with acknowledgement to Wix, 1994).

3.5 Apertures and Contexts

A Face may have internal boundaries which may represent an aperture. 

The location of an aperture within the host Face is defined by a Context. 

Apertures can represent windows or doors. (Fig. 1, section 6) (The 

representation of Apertures is discussed in more detail in section 4.4 

‘‘Regional Topology’’)

3.6 Material representations
While all Cells have a common topology (a closed 3D region bounded 

by Faces) different configurations of Cells may be generated from 

different types of foundational topologies using different geometric 

operations (Fig. 1, section 7), for example:

Point location connector components: may be based on Vertices.

Linear components such as columns or beams: may be based on Edges 

(or Wires) using operations where a cross section Wire is extruded 

along a path.

Area based components such as slabs, floors, walls may be based on 

Faces: using offset operations with a specified thickness and direction.
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Volume based components such as a containment vessel may be based 

on Cells using thin-shell operations and a specified wall thickness.

Conformal cellular structures, used in 3D printing, may be based on 

CellComplexes.

Complex sub-assemblies of material components can be modelled as 

Clusters. 

3.7 Integration of idealized and material models
The integrated BIM model uses the idealized non-manifold spatial model 

to define the location and connectivity of the material model. (Fig.1, 

section 8). The defining centre lines or centre faces of walls and floors 

of the material model may be offset from the edges and faces of the 

idealized model. We can now appreciate the difficulty of attempting to 

reverse the direction of the arrow to recover an idealized spatial model 

from a material model.

In traditional BIM, the 3D material representation is the defining 

model while the drawings are the derived models. With architectural 

topology the idealized non-manifold topological representation becomes 

the defining model and the 3D material representation is now a derived 

model.

The idealised non-manifold spatial model acts as a useful conceptual 

and practical intermediary between the user and the material model (Fig 4).  

In this workflow the user is not manually placing specific material com-

ponents on specific Faces or Edges of the idealised model. If such a 

workflow had been adopted, then any change in the idealised topology 

might have removed these specific Face and Edge and orphaned (or 

potentially deleted) the material components. Also such a change to the 

idealised topology might have created new Faces and Edges which the 

user would be required to populate with material components.

Instead, the populating of the idealised topology is rule-based using 

the Visual Data Flow programming tools available in the host applica-

tion. The rule-based generation of the material model allows alternative 

building configurations to be easily explored via the manipulation of the 

idealised spatial model as previously suggested (Aish and Pratap 2013).
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Figure 4: An idealised spatial model built with non-manifold topology 
can be used as a  convenient intermediate representation to manipulate 
a material model, involving:

a. creating a cell from a lofted solid.

b. dividing the cell using several faces, resulting is a  
CellComplex.

c. the individual cells can be derived from the CellComplex.

d. introduce a cylinder outside the CellComplex.

e. move the cylinder into and imposed on the CellComplex: 
new cells are created. 

f. move the cylinder further into the centre: the cells update 
accordingly.

g. h.  i. corresponding material models are derived from the 
NMT models in d, e, f. 

The workflow includes detecting vertical and non-vertical edges, 

sweeping a circle along vertical edges to create cylindrical columns 
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and a rectangle along non-vertical edges to create rectangular beams. 

The depth of the beams are parametrically computed according to their 

length. For visualisation purposes, the surfaces are thickened slightly 

into solids and made translucent.

4. Using non-manifold topology to 
represent relevant architectural concepts
Non-manifold topology embraces fi ve concepts with architectural 

relevance:

4.1 Non-manifold Cell
A non-manifold Cell may contain internal Faces which are not part of 

the external Cell boundary. Both sides of such internal Faces point to 

the same enclosed region. The concept of a non-manifold Cell is 

required to model internal ‘‘semi-partitions’’ of architectural spaces which 

do not fully divide the cell. (Fig. 5)

Figure 5: Different confi gurations of non-manifold Cells.

4.2 Cellular Topology

Cellular Topology is implemented as a CellComplex, where some Faces 

of the Cell are also the external boundary, while other Faces form the 

boundary between adjacent Cells. Cellular Topology can be used to 

model a building which is partitioned into different architectural spaces 

(Fig. 6).
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Figure 6: Cellular Topology modelled as a CellComplex.

4.3 Mixed dimensionality Topological models

In non-manifold topology it is possible to construct a single topological 

model composed of entities of different types and dimensionality. The 

concept of a mixed dimensionality topology is implemented as a Cluster 

and can be used to create an idealized model of the structure of a 

building (Fig. 7).

Figure 7: A mixed dimensional model with Edges representing the  
column centre lines and Faces representing floor slabs, blade columns 
and shear walls. Cells are used to represent the building cores.
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4.4 Regional Topology

In conventional topological modelling, higher dimensional topological 

entities are constructed from lower dimensional ones. Higher 

dimensional topological entities are connected because they share 

common lower dimensional entities. For example, adjacent Cells within a 

CellComplex may share a common Face.

However, in the domain of architecture there are other forms of con-

nectedness which cannot be directly expressed in this way. For example, 

a column can be idealised as an Edge. A fl oor or ceiling can be idealised 

as a Face. We intuitively understand that a column (Edge) may connect 

a fl oor (Face) to a ceiling (Face), but how can this be described if the 

column is in the middle of the fl oor and when there is no topology within 

the defi nition of the fl oor and ceiling Faces which is shared with the 

Vertices defi ning the column’s Edge? (Fig. 8).

Figure 8: Defi ning the ‘‘Context’’ to describe the connectedness of two 
topologies where one entity exists within the region of the other entity and 
when the two entities do not share any common constituent topology.

Similar issues arise when we consider an internal boundary within a Face. 

For example the Face may represent a wall and the internal boundary may 

defi ne an Aperture such as a window or a door. We intuitively under-

stand that the Aperture (as a single 2D region) is contained within the 

2D region of the Face, with no shared topology.

To address these issues, Topologic introduces the concept of a 

context to represent the connectivity between two topological entities 

which do not otherwise share common topology. In this example, the 

Aperture is the subject (representing a window) and is defi ned within 

the region (or context) of the host Face (representing the wall). The 
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user may optionally specify that the context defines a locational ‘‘link’’ 

between the subject and the host. Here the vertices of the subject are 

defined in the parameter space of the host and are now dependent on 

any changes which are applied to the host. (Fig. 9).

The context with parametric coordinates is only used when there is 

no shared topology connecting the two entities (Fig. 10).

4.5 Variable topology
In architecture, spatial divisions may be ‘‘hardcoded’’ as distinct rooms 

separated by physical walls. While buildings appear to be solid, one of the 

central tenets of architecture is that the use of space within a building is 

or should be flexible. We think of multi-use or reconfigurable spaces.

There appears to be no established architectural methodology which 

prescribes how the topology of a building emerges. In fact, the archi-

tectural design process is quite imprecise. It may start with an occupancy 

model and a description of the anticipated activities of the occupants. 

Activities may vary in time and space. Activities may overlap. Alexander 

(1965) noted that neither activities nor space could be adequately 

described by a simple hierarchical decomposition. The process by which 

activities get translated into specific spatial enclosures and the choice 

as to which boundaries of these enclosures are actually materialised as 

walls or are left as purely virtual, is often a matter of contention (Fig. 11).

Virtual partitions may also be used in the topological representation of 

Figure 9: The option to ‘‘link’’ the subject topology to the host topology. 
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Figure 10: Given the intersection of an Edge (red) and a Face (grey) in 
different configurations, then the concept of the context (with parametric 
coordinates) is used when the resulting Vertex occurs within a region of 
the intersecting topologies.

other building sub-systems. For example, an atrium may be considered 

as a single continuous space, or it may be considered to be subdivided 

into different air conditioning zones without physical partitions. Depending 

on the simulation parameters, virtual Faces could be inserted and can be 

represented in the analytical model either as adiabatic or diathermic.

More generally, architecture is often characterized by degrees of 

spatial partitioning and connectedness. How can these different and  

sometimes ambiguous architectural concepts of space be represented with 

topology? Topology provides a formal way to represent connectedness, but 



 332 AAG2018  333

user may optionally specify that the context defines a locational ‘‘link’’ 

between the subject and the host. Here the vertices of the subject are 

defined in the parameter space of the host and are now dependent on 

any changes which are applied to the host. (Fig. 9).

The context with parametric coordinates is only used when there is 

no shared topology connecting the two entities (Fig. 10).

4.5 Variable topology
In architecture, spatial divisions may be ‘‘hardcoded’’ as distinct rooms 

separated by physical walls. While buildings appear to be solid, one of the 

central tenets of architecture is that the use of space within a building is 

or should be flexible. We think of multi-use or reconfigurable spaces.

There appears to be no established architectural methodology which 

prescribes how the topology of a building emerges. In fact, the archi-

tectural design process is quite imprecise. It may start with an occupancy 

model and a description of the anticipated activities of the occupants. 

Activities may vary in time and space. Activities may overlap. Alexander 

(1965) noted that neither activities nor space could be adequately 

described by a simple hierarchical decomposition. The process by which 

activities get translated into specific spatial enclosures and the choice 

as to which boundaries of these enclosures are actually materialised as 

walls or are left as purely virtual, is often a matter of contention (Fig. 11).

Virtual partitions may also be used in the topological representation of 

Figure 9: The option to ‘‘link’’ the subject topology to the host topology. 

 332 AAG2018  333

Figure 10: Given the intersection of an Edge (red) and a Face (grey) in 
different configurations, then the concept of the context (with parametric 
coordinates) is used when the resulting Vertex occurs within a region of 
the intersecting topologies.

other building sub-systems. For example, an atrium may be considered 

as a single continuous space, or it may be considered to be subdivided 

into different air conditioning zones without physical partitions. Depending 

on the simulation parameters, virtual Faces could be inserted and can be 

represented in the analytical model either as adiabatic or diathermic.

More generally, architecture is often characterized by degrees of 

spatial partitioning and connectedness. How can these different and  

sometimes ambiguous architectural concepts of space be represented with 

topology? Topology provides a formal way to represent connectedness, but 



 334 AAG2018  335

Figure 11: The choice of spatial confi guration often starts with identi-
fying underlying activities of the occupants (1). These activities and their 
spatial requirements may overlap. It may be inappropriate to describe 
these as a simple hierarchical decomposition (with acknowledgement 
to Alexander, 1965). The process by which activities are translated into 
defi ned conceptual spaces (2) and are further translated into recognisable 
enclosures (3) or into specifi c rooms (4) often refl ects architectural 
intuition rather than a defi ned methodology. 

 334 AAG2018  335

when applied to architecture, it requires the user to choose what is being 

connected.

If two adjacent regions have exactly the same contents with the 

same behaviour and are so intimately connected that there is no effec-

tive barrier between them, then perhaps they should be considered as a 

single region. So, the ultimate form of connectedness is the unification 

of two adjacent regions into a single region or Cell. Therefore, a Cell 

is more than just a continuous 3D region. It also implies that what is 

contained represents a level of homogeneity, which has appropriate 

meaning within the application domain.

If Cells represent spaces and Faces represent walls (or partitions) 

then operations which add or remove the Faces of Cells within a Cell-

Complex can radically change the topology. The result of a modelling 

operation to an existing topological construct may change the ‘‘type’’ of 

that construct. The advantage of Topology is that it tells the architectural 

users exactly what has been modelled in terms of partitioning and  

connectedness and the type of the result (Fig. 12).

The general conclusion is that, where possible, the user should 

define a single canonical non-manifold topology model describing the 

maximal partitioning of space. Different subdivisions may be combined 

to represent the spaces required for different activities. Different dual 

graphs can be constructed as required by different analysis and simula-

tion applications (Fig. 13).

Figure 12: Editing operations to add or remove topological components 
can have a radical affect, including changing the type of topological 
construct.
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5. Applying topology in analysis,  
simulation and fabrication
Vitruvius distinguished between the practical aspects of the architecture 

(fabrica) and its rational and theoretical foundation (ratiocination) (Pont 

2005). Establishing topological relationships was found to be an essential 

component of the setting out of the conceptual principles of a design 

project (Jabi et al. 2017). Non-manifold topology was also found to be a 

consistent representation of entities that can be thought of as loci, axes, 

spaces, voids, or containers of other material.

This concept was previously explored by the authors in the context of 

energy analysis, façade design, and additive manufacturing of conformal 

cellular structures (Jabi 2016; Fagerström, Verboon, and Aish 2014; Jabi 

et al. 2017).

5.1 Energy analysis
A proof of concept implementation of non-manifold topology for energy 

analysis allowed the user to create simple regular manifold polyhedral 

geometries and then segment them with planes and other geometries 

to create a non-manifold CellComplex (Chatzivasileiadi, Lannon, et al. 

2018; Wardhana et al. 2018). The tool can create complex geometry that 

produces outputs that are highly compatible with the input requirements 

for energy analysis software. Cells within the CellComplex are conver-

ted to spaces with surfaces, and bespoke glazing sub-surfaces, and set 

to their own thermal zones.

5.2 Digital fabrication
A proof of concept implementation of non-manifold topology for digital 

fabrication allowed a CellComplex to be conformed to a NURBS-based 

design envelope (Jabi et al. 2017).The resulting model used topological and 

geometric queries amongst adjacent Cells to create rules for depositing 

material. These query results were used to identify boundary conditions 

and to deposit material only where needed. This improved the material 

efficiency and resulted in a higher mechanical and structural profile for 

the 3D printed model.
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Figure 13: Dual graphs can be constructed which describe alternative 
connectivity of  the Cells representing architectural spaces and used as 
different analytical models.
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6. Conclusions
New design technologies often emerge in response to the limitations of 

existing technologies and have the potential to benefit the architectural 

design process. Understandably, the founding concepts and terminology 

may be unfamiliar to architectural practitioners which may inhibit 

adoption of these technologies.

The challenge in developing Topologic has been to maintain the 

theoretically consistent use of topological concepts and terminology, 

yet relate these to the more ambiguous concepts of space and 

‘‘connectedness’’ found in architecture. The application of topology as 

a direct link between architectural conceptual modelling and relevant 

analysis applications is becoming established. A more challenging 

task is to explore how topology can contribute to the way in which 

architecture as the ‘‘enclosure of space’’ can be conceptualised.
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Abstract 
This paper presents a strategy for the exploration of the topology of 

structural patterns, such as beam grids for gridshells or voussoir tessel-

lations for masonry vaults. The authors define topology finding, by ana-

logy and in complement to form finding, as the design of the connecti-

vity of patterns in relation to architectural and structural requirements. 

The method focuses on the design of the singularities in the pattern 

through the automatic generation and subsequent rule-based editing 

of a coarse quad mesh that encodes the properties of the singularities 

and their relationships before mesh densification, pattern mapping, 

geometrical exploration and performance assessment.

Figure 1: Two examples of structural patterns for shell-like structures: 
(a) beam grid of the Hippo House in Berlin, Germany (photo credit: sbp.
de) and (b) voussoir tessellation of the King’s College Chapel in Cam-
bridge, England (photo credit: kings.cam.ac.uk).

 (a)

 (b)
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1. Introduction 

1.1 Structural patterns 

Shell structures span large areas efficiently thanks to their double 

curvature that provides geometrical stiffness. These structures are 

often discretised in a pattern, which constitutes the load-bearing system 

once fabricated and assembled. Beam grids for gridshells or voussoir 

tessellations for masonry vaults are such examples of structural patterns 

for shells (Fig. 1). The design of structural patterns is a complex and rich 

process influenced by many aspects of the projects, such as aesthetics, 

statics, fabrication, assembly, as well as sustainability and cost.

1.2 Topology of patterns
Reciprocally, the choice of pattern greatly influences these criteria 

since a pattern performs better for some criteria and worse for others. 

More specifically, the topology – or connectivity – of a structural pattern 

matters because it sets the bounds of the geometrical design space, 

within the general design space, for form finding and other geometrical 

design approaches. This geometrical design space, which represents all 

the possible geometries for a given topology, may not contain efficient 

or even feasible designs. Indeed, the topology, and more specifically the 

set of singularities in a pattern, define the qualitative degrees of freedom 

for design and optimisation, as illustrated by Schiftner and Balzer (2010) 

for competing statics and fabrication requirements. For this reason, de-

signers need conceptual and practical tools to allow them to flexibly and 

efficiently explore the topology of structural patterns during early-stage 

design, as stated by Harding et al. (2012), and make design choices 

which balance the different performance requirements.

1.3 Contributions and outline 
This research introduces topology finding of structural patterns. Topology 

finding deepens the available design space for geometrical exploration. 

The authors use a specific design space structure and focus on the 

design of the singularities through a coarse quad mesh.

This new practical design tool is implemented as a package for 

COMPAS (Mele et al. (2017)), an open-source computational Python 

framework for researchers, professionals and students working in the 

fields of architecture, engineering and digital fabrication.
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Section 2 shows the design space structure used for topological design 

of patterns. Section 3 develops an automated generation scheme for the 

singularities of the pattern using the medial axis of a shape. Section 4 

presents a rule-based editing method for the singularities of the pattern 

using a grammar.  Section 5 illustrates how to visualise designs from a 

topological space based on their relative performance.

2. Design spaces 

Topology fi nding relates to the exploration of the three topology-related 

design spaces: singularities, density and pattern, in complement to the 

geometrical design space. These design spaces derive from each other 

as shown in Figure 2 for the gridshell of the Great Court at the British 

Museum in London, England, whose geometry has been analytically de-

fi ned by Williams (2001), and which serves as main example throughout 

this paper.

Figure 2: The design space structure for topological exploration of 
patterns.

The design of the singularities in a pattern is handled at the level of a 

coarse quad mesh (which can also be referred to as control mesh or 
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patch set), which includes the vertices which represent the singularities 

and whose edges represent their connectivity in the pattern, and which 

defi nes the parameterisation directions of the shape.

The density is set through densifi cation of the coarse quad mesh 

into a quad mesh and the pattern is derived from a transformation of the 

quad mesh elements, for instance through global conversion of the initial 

quad mesh into its dual mesh, its diagonal mesh or through triangulation, 

supplemented by local modifi cations.

The geometry of the pattern is explored through smoothing, form 

fi nding, form optimisation etc. Although presented linearly, the designer 

can move downstream and upstream the design space structure during 

the design process.

All the patterns that are presented in this paper are untrimmed and 

characterised as being aligned with the boundaries, which benefi ts the 

aesthetics, favors loads paths parallelly or perpendicularly to the boun-

daries and avoids the creation of irregular elements to fabricate and 

assemble. However, this characteristic can induce practical limitations 

when performing planarisation with constrained straight boundaries, as 

mentioned by Tang et al. (2014). 

The fi rst challenge is about how to enter the design space, manual 

drawing of a coarse quad mesh requiring time and experience.

3. Automated generation 

We describe a scheme to automatically generate an initial coarse quad 

mesh, and a corresponding pattern, on a NURBS surface input. The 

input surface is initially mapped to the plane based on its UV-paramete-

risation, then the coarse quad mesh is generated on the planar map be-

fore being remapped back onto the surface. The density and the pattern 

are set, before being relaxed on the surface and further processed.

3.1 Singularities 
The singularities are derived from the medial axis of the surface, also 

known as its topological skeleton, introduced by Blum (1967), which 

consists in a dimensional reduction of the the surface into a set of 

curves called medial branches. The steps of the process to obtain a 

coarse quad mesh are show in Figure 3.
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The input NURBS surface is mapped to the plan and its boundaries 

are subdivided into a set of vertices for a Delaunay triangulation. The 

key points from the Delaunay mesh are: the singular points S at the 

centroids of singular faces (faces adjacent to three other faces), the 

boundary points B at the vertices of singular faces, and the corner points 

C (two-valent boundary vertices). The medial axis is consituted by the 

branches connecting the circumcentres of the adjacent Delaunay faces: 

the S-S and S-C branches. The medial axis defi nes a natural decompo-

sition of the surface with singularities stemming from its topology. Three 

simple heuristics based on the connectivity of the Delaunay mesh, which 

relate to Rigby (2003), are used to generate a coarse quad mesh from 

the medial axis: pruning to remove the S-C branches; grafting to add 

the S-B branches; and closing to add the B-B and B-C branches. The 

extracted connectivity of these branches defi nes the coarse quad mesh.

Figure 3: Medial-axis-based automated generation of a coarse quad 
mesh from the planar map of an input surface: (a) triangulation, 

(b) skeletonisation, (c) pruning, (d) grafting, (e) closing, (f) extraction.
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3.2 Pattern

From the automatically generated coarse quad mesh, a smooth pattern 

can be directly generated on the input surface, as shown in Figure 

4. Once the singularities are generated and the coarse quad mesh is 

mapped back onto the input surface, the density and the pattern can be 

chosen.

Figure 4: Automated generation of a smooth quad mesh on a surface 
from a coarse quad mesh: (a) remapping, (b) densifi cation, (c) relaxation.

The density of the pattern is controlled per quad face strip in the coarse 

quad mesh, because each pair of opposite edges in each quad face 

share the same density parameter. The dependent edges are grouped 

in independent groups that correspond to the density parameters per 

face strip. The designer controls all of these degrees of freedom and 

can automatically compute subdivision parameters based on a target 

length and the average length of the edges in each group. The coarse 

quad mesh is then densifi ed into a quad mesh that sets the density of 

the pattern.

Figure 5: Automated generation of a smooth quad mesh on an input 
free-form surface: (a) coarse quad mesh, (b) smooth quad mesh.

The pattern is relaxed on the surface with constraints at boundary 

corners and along boundary curves using a smoothing algorithm, such 

as (area-weighted) Laplacian smoothing (Botsch et al. (2010)), to provide 
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a smooth starting geometry for further exploration. Figure 5 shows an 

example with stronger double curvature after automated generation of 

a coarse quad mesh and tuned densifi cation and relaxation, necessary 

to compensate the distortions between the coarse quad mesh and 

the NURBS surface, even though the vertices of the mesh lie on the 

surface.

Figure 6: Automated generation of smooth patterns on a surface using 
Conway operators: (a) ambo, (b) kis, (c) gyro, with singular elements 
highlighted in magenta.

The pattern is derived from global transformation of the quad mesh and 

its elements, for instance using the operators by Conway et al. (2016), 

as shown in Figure 6 applied to the quad mesh in Figure 4, and already 

investigated by Shepherd and Pearson (2013) adn applied to the original 

pattern of the British Museum. The singularities from the quad mesh are 

converted into irregular vertices or faces in the pattern. Another round 

of constrained relaxation on the surface provides smoothness to the 

pattern.

3.3 Form fi nding
The input surface provides a starting geometry with the main topological 

information. Figure 7 shows a thrust network resulting from a funicular 

form fi nding process using RhinoVAULT (Rippmann and Block (2013)) 

after conversion of the relaxed pattern into a form diagram projected 

to the XY plane. The input curved surface serves as design intent and 

helps to reduce the element distortion due to the slope.

Nevertheless, a planar input surface is suffi cient to generate a pat-

tern, as shown for the design in Figure 8, inspired by the Solemar baths 

in Bad Dürrheim, Germany. The quad mesh structure, the smoothness, 

the low number of singularities and the alignment to the boundaries 

permit clear readability between the reciprocal form and force diagrams, 

a key aspect of interactive graphical design methods and empowers the 

designer to perform force-based geometrical exploration.
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Figure 7: Funicular form fi nding revisiting the geometry of the British 
Museum: (a) form diagram, (b) force diagram (rotated by 90°), (c) thrust 

network.

3.4 Pole points 
Pole points are a special type of singularities whose valency depends on 

the density of the pattern. Poles are integrated in the coarse quad mesh 

by allowing pseudo-quad faces which are geometrically as triangles 

but topologically as quads with a double vertex at the pole location, as 

shown in Figure 9.

Point features complete the input data. These points are added to 

the set of vertices of the Delaunay mesh, which displays thereby additio-

nal singular faces around the point features. The resulting coarse quad 

mesh includes pseudo-quad faces around the point features, which serve 

as double vertices, marked as fi lled dots. Thus, the generated pattern 

features additional singularities and poles.

Poles can stem from statics reasons such as concentrated forces, 

loads or reactions, or geometrical reasons such as umbilical points. 

The design in Figure 10 revisits the ribbed slabs of Pier Luigi Nervi 

by showing a smooth planar quad mesh with multiple point features: 

although the pattern does not derive from the integration of principal 

stress directions for a load combination, the design is informed by the 

statics system by heuristically adding poles at the location of columns to 

provide a high number of load paths towards the supports.

The second challenge is about how to move in the design space, 

since the singularities from the medial axis may not be the best choice 

regarding the relevant requirements, though they naturally derive from 

the topology of the boundaries.
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Figure 8: Automated topological generation and funicular form fi nding 
revisiting the Solemar baths in Bad Dürrheim, Germany: (a) coarse quad 
mesh, (b) form diagram, (c) force diagram (rotated by 90°), (d) thrust 
network.

Figure 9: Automated generation of a smooth quad mesh with poles: (a) 
input with point features, (b) Delaunay mesh, (c) coarse quad mesh, (d) 
smooth quad mesh with poles.
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Figure 7: Funicular form fi nding revisiting the geometry of the British 
Museum: (a) form diagram, (b) force diagram (rotated by 90°), (c) thrust 

network.
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revisiting the Solemar baths in Bad Dürrheim, Germany: (a) coarse quad 
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Figure 9: Automated generation of a smooth quad mesh with poles: (a) 
input with point features, (b) Delaunay mesh, (c) coarse quad mesh, (d) 
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Figure 10: Automated generation of a smooth quad mesh with multiple 
poles: (a) coarse quad mesh with pseudo-quad faces, (b) smooth quad 
mesh with poles.

4. Rule-based editing 

The exploration of the design space related to the singularities in the 

pattern is performed through topological modifi cations of the coarse 

quad mesh using grammar rules.

4.1 Topological spaces
Indeed, topological spaces are more general than geometrical spaces, 

which have a metric that allows thorough exploration using conti-

nuous-valued design parameters. Nevertheless, topological spaces can 

be explored using grammars to perform topological transformations in a 

rule-based design approach. For structural design, original shape gram-

mars evolved into functional grammars (Mitchell (1991)) and then into 

structural grammars (Mueller (2014)) to include non-geometrical data 

related to structures. Specifi c to shell structures, Shea and Cagan (1997) 

introduce a grammar for the design of structural patterns for geodesic 

domes, which are triangulated meshes. The grammar required for explo-

ration of singularities is specifi c for the editing of coarse quad meshes, 

optionally including pseudo-quads, where most vertices are singular.

4.2 Grammar rules
Infi nite combinations exist to modify a set of quads into another.  The 

practical grammar introduced in Figure 11 has been developed based on 

 352 AAG2018  353

practice and experience to achieve certain designs with certain goals. 

This grammar represents a set of tools for the designers and is meant to 

be further enriched.

Figure 11: A practical grammar for rule-based editing of coarse quad 
meshes for singularities in patterns.

Rules A to F split a single quad into multiple quads by adding different 

sets of singularities, which change the edge fl ow. Rules G and H add 

pseudo-quads at a vertex or an edge of a face, respectively. Rule I in-

serts convex singularities (valency < 3) or concave singularities (valency 

> 3) at the boundary. Rule J is a coarsening operation which collapses 

a quad strip (in red), corresponding to one density parameter. Rule K 

subdivides a quad in two quads without introducing singularities as a 

utility rule.

After applying one or several of these local rules,  a global propa-

gation procedure ensures the validity of the coarse quad mesh. For 

instance, if a face is modifi ed and one new vertex added on an edge, the 

adjacent quad face becomes a pentagon, which must be split into two 

quads, and so on.

4.3 Exploration
A set of designs with different singularities are edited in Figure 12. 

Starting from the automatically generated topology 0, fi fteen other to-

pologies are constructed. The edited coarse quad meshes are projected 

back onto the input surface. All these designs result from open explora-

tion, without any algorithmic approach, and represent a small set of this 

unstructured design space. 
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Topologies 1 to 3 result from coarsening of topology 0 using rule J: 

topologies 2 and 3 appear as the two simplest ones among the sixteen, 

with topology 0 as a compromise between them, hence the relevance to 

start with the medial-axis singularities. Rule K is used for topology 1 to 

avoid collapsing the opening to only two vertices. Topologies 4 to 6 result 

from the applications of rules A to C to the corner quads of topology 0, 

respectively. Topologies 7 and 8 result from the applications of rule D to 

the corner quads of topology 3 with two different orientations. Topologi-

es 9 and 10 result from the applications of rules E and F to the top and 

bottom quads of topology 2, respectively. Topology 11 results from the 

application of rule I to the top, bottom, left and right quads of topology 0. 

Topologies 12 and 13 result from the application of rule G to the corner 

quads of topology 0 to add poles, without and with coarsening using rule 

J, respectively. Topologies 14 and 15 result from the application of rules J 

and H to the outer boundary quads of topology 0 to add poles, without 

and with coarsening using rule J, respectively. 

The third challenge is about how to visualise the design space, in 

spite of the lack of continuous-valued parameters structuring the design 

space.

Table 1: Sequences of rules applied per topology starting from the 
automatically generated topology.
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Figure 12: Rule-based exploration of the topological space of 
singularities in patterns.
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5. Performance-driven visualisation
Instead of visualising the design space based on the topology of the 

pattern, using the performance of each topology for one or several 

criteria allows to shift the problem to the visualisation of a (potentially 

high-dimensional) metric space and inform the designer on the relative 

performance of the different topologies and understand their advanta-

ges and drawbacks.

5.1 Designs
All the topologies of the coarse quad meshes in Figure 12 are converted 

into smooth quad meshes as design patterns shown in Figure 13, which 

relaxed on the input surface. The density design space formed by the 

density parameters of the quad strips of the coarse quad mesh is a 

space in itself which can be subjected to optimisation. Here, the same 

target length is used to defi ne the density parameters, though it results 

in differences on the edge length sum, particularly because of poles.

5.2   Performance metrics
The design of a steel and glass gridshell such as the British Museum 

must integrate a wide range of requirements, among which from fabrica-

tion and statics. A few classic of them are considered here.

5.2.1 Fabrication

A fi rst criterion is the planarity of the panels, i.e. the face curvature 

must be minimised to avoid expensive bending processes. The metric is 

computed as:

with

where L1 and L2 are the lengths of the diagonals of a quad face and dL 

the shortest distance between them.
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Figure 13: Gridshell pattern designs for the British Museum.
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A second criterion is the skewness of the panels, i.e. the face skewness 

must be minimised to reduce material loss when cutting the panels.   

The metric is computed as:

with

where θmin and θmax are the minimal and maximal angles between two 

consecutive edges in the quad face. 

A third criterion is the regularity of the edges, i.e.  the variation of 

edge lengths must be minimised to avoid fabrication of too long or too 

short elements.  The metric is computed as the standard deviation of the 

edge length in the mesh Lmesh. 

The optimal parameterisation regarding these fabrication criteria 

follows the lines of principal curvature (Monge (1798), Liu et al. (2006)). 

However, the input surface and these lines evolve during geometrical ex-

ploration such as form fi nding and do not relate to structural effi ciency.

5.2.2 Statics

Structural effi ciency of a pattern depends mainly on the edge fl ow and 

its relevance for the considered statics system. Three support conditions 

shown in Figure 14 are taken into account to highlight this sensitivity: the 

structure is always vertically supported along its outer and inner bounda-

ries, but thrust is applied either all along its boundaries, at 4 points only 

(the poles in design 14) or at 8 points only (the poles in design 12). The 

metrics are computed as the structural mass M1, M2 and M3 after sizing 

optimisation for each support conditions, respectively.

Some hypothesis are made for comparative analysis.

The S355 steel profi les all have the same tubular cross section and 

are clamped at the nodes. The tube diameter is minimised for each de-

sign with a fi xed wall thickness (t = 40mm). This choice of unique cross 

section is meant to favor designs with the most homogeneous stiffness 

distribution for the considered statics system. The considered load cases 

are the self-weight G, a vertical downward permanent loading G' = 1kN/
m2 and a vertical projected downward snow loading S = 1kN/m2, either 
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on the whole structure (S0) or on one fourth of the structure (S1, S2, S3, 

S4). The SLS and ULS load combinations are 1.0(G + G') + 1.0Si and 

1.35(G + G') + 1.5Si, respectively.

Figure 14: Considered thrust conditions: (a) full boundary thrust for M1, 
(b) thrust on 8 points for M2 and (c) 4 points only for M3.

The structural analysis and sizing optimisation are performed in a 

framework well known by architects and engineers: Rhino3D and 

Grasshopper3D using the fi nite element software Karamba and the 

gradient-free optimisation library Goat. Constrained optimisation of the 

structural self-weight is expressed in Equation (5), similarly to Mesnil et 

al. (2017). Constraints apply on the maximum SLS defl ection 𝑓𝑓𝑑𝑑 (60 mm 

or 1/500e of the span), the maximum ULS cross-section utilisation ratio 

𝑢𝑢𝑑𝑑 (100 %) and the minimum ULS buckling load factor 𝑝𝑝𝑑𝑑 (1). Eventually, 

defl ection ends up being the governing constraint, with utilisation ratios 

staying below 80 % and fi rst buckling load factors above 4 for all the 

designs.

5.3 Self-organising maps

The raw results are displayed in Table 2 with the value of each metric for 

each design and its rank among all the sixteen designs: the lower the 

metric, the lower the rank and the more effi cient the design regarding 

the metric. As expected, design 14 performs the best for the 8 thrust 

point support condition thanks to the poles, but more surprisingly, design 

7 performs the best for the other support conditions. The mean and the 
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standard deviation are also computed to show the distribution per metric. 

The metrics M2 and M3 featuring different means but similar standard 

deviations show that the sensitivity to the 8 thrust point support condi-

tion is higher than to the one with 4.

The design space can be be visualised based on these results 

using self-organising maps.  Self-organising maps are a neural network 

technique for dimensionality reduction of a N-dimensional space to a 

lower dimension. Using the implementation by Harding (2016), the initial 

6-dimensional performance space is reduced to a 2-dimensional map, as 

shown in Figure 15.

Table 2: Performance of each design per metric as value and rank.

The performance of each design 𝑖𝑖 is displayed as a bar chart using 

dimensionless metrics X𝑖𝑖
*:

The Voronoi diagram between the designs mark their infl uence on the 

underlying map of six-dimensional vectors.

The closer two designs, the more similar their respective perfor-

mances.  Thereof, performance clusters appear: designs 12, 13 and 14 

perform well regarding face curvature but badly regarding edge length, 

because of the poles, and are structurally effi cient for thrust at eight or 

four points; designs 3, 7 and 8 perform well regarding face skewness 
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Figure 15: Self-organising map for performance-driven visualisation of 
the topological design space of singularities.

and edge length but badly regarding face curvature, because of the 

singularities on the inner boundaries, and are structurally effi cient for full 

thrust; designs 2, 9 and 10 strike a compromise between all the metrics.

This map helps understanding the consequences of a choice of sing-

ularities along the design process and illustrates the necessary trade-off 

between competing require ments which have to be balanced. 

6. Conclusion

This paper introduces topology fi nding of structural patterns, comple-

mentary to form fi nding. Design and exploration of the topology of a 

pattern and its singularities is approached through automated gene-

ration and rule-based editing of coarse quad meshes. Design space 

exploration can be informed via performance-driven visualisation.
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Implemented in a practical tool, these design strategies allow the architect 

and the engineer to explore efficiently the topological design space.

Future work should focus on algorithmic exploration of the design 

space. A challenge is to shift from performance-informed exploration 

and resorting to experience and heuristic rules (poles at the location 

of concentrated forces for structural efficiency, alignment with princi-

pal curvature directions for panel planarity…) to guided exploration to 

well-performing parts of the design space.

Another challenge is the development of automated generation 

schemes for more general topological shapes. Indeed, the NURBS 

surfaces here are all disc-homotopic, potentially with perforations, and 

do not need seams for planar mapping, on the contrary to closed shapes 

like spheres and non-null genus shapes like tori, which are also part of 

the topological family of orientable compact manifolds.
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and resorting to experience and heuristic rules (poles at the location 

of concentrated forces for structural efficiency, alignment with princi-

pal curvature directions for panel planarity…) to guided exploration to 

well-performing parts of the design space.

Another challenge is the development of automated generation 

schemes for more general topological shapes. Indeed, the NURBS 

surfaces here are all disc-homotopic, potentially with perforations, and 

do not need seams for planar mapping, on the contrary to closed shapes 

like spheres and non-null genus shapes like tori, which are also part of 

the topological family of orientable compact manifolds.
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Abstract
This paper explores our project of constructing a pavilion applying the 

self-stabilizing hammock structure on site. This structure was proposed 

to utilize its non-linear logic through iterative method of fabrication. It 

was as deployed on site by a base geometry of thin, steel fixed-base 

columns, connected loosely by individual meshes, which are then 

stiffened by loading coconut fibers upon the meshes. We developed an 

algorithm to compute the amount of fibers to be deposited on meshes 

at each loading sequence, aiming to make all initially inclined columns 

upright. First, this paper outlines the non-linear feature of the hammock 

structure through assessment of its buckling length, and shows the 

loading algorithm designed based on an inverse analysis to define 

a load-displacement relationship, and the result of iterative loading 

simulation. Second, the design and entire installation procedures of the 

hammock-structure pavilion, and the implementation of the developed 

algorithm are described. It was realized through daily feedback proces-

ses, where column coordinates obtained by using a set of motion cap-

tures were input into CAD and structural analysis software, to update 

and reconfigure the loading sequence for the next day. Following this, 

we illustrate a natural frequency test conducted during the dismantling 

of the pavilion. Finally, we evaluate recorded column coordinate data, 

as well as actual weights of loaded meshes measured in dismantling. 

This allows us to pinpoint potential improvements to the loading algo-

rithm, particularly the modelling of peripheral meshes and columns. 

1. Introduction
The hammock structure was proposed to utilize its potential of self-sta-

bility as well as non-linear nature per se as a logic for its fabrication. The 

main components of its frame are thin, cantilever columns, and meshes 

that at first, loosely connect the heads. The general idea of its self-sta-

bilization is that, when tension is generated after applying load onto the 

meshes, the columns are stiffened against buckling. This structure was 

scaled up and materialized in our experimental project of the installa-

tion of a full-scale pavilion, which consisted of a number of fine steel 

columns, coir coconut rope meshes, and coconut fibers used as load 

(Fig. 1). These columns in their initial position were inclined; some were 

cambered to prevent undesired deflections, and the others were inclined 
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randomly at a slight angle. For this installation a loading algorithm was 

designed to calculate loading target meshes and the requisite amount of 

fibers to be deposited at each loading sequence. Each loading sequence 

took place each day, and the whole structure was scanned every night, 

in order to structurally optimize the load distribution. We intended that at 

the end of the construction process all columns become vertical.

This paper explores the design and operations of the loading algo-

rithm based upon the fundamental concept of the hammock structure, 

and evaluates how it functioned in the pavilion installation. An underlying 

mechanism for this structure is the stiffening effect of the external load. 

While Chen and Kawaguchi (2012) investigate the static properties of 

the hammock structure in the context of a negatively pressurized pneu-

matic structure (see also Chen (2014)), we intend to utilize this effect 

directly for supporting the weight of the roof, and apply its non-linear 

features to construction method. We also investigate the dynamic beha-

vior under lateral loads.

Our project is an attempt at linking the essence of geometry explo-

ration by means of evolutionary algorithms and structural optimization 

tools in the initial stage of design (e.g. structural engineer Mutsuro 

Sasaki’s works characterized by repetitive non-linear analysis procedu-

res; see Januszkiewicz and Banachowicz 2017), with an area of research 

on cyber-physical design (e.g. Doerfler et al., 2017; Lopez et al., 2016; 

Yoshida et al., 2015). The proposed self-stabilization method predetermi-

nes a structural form, like a hammock and is conditioned by a reciprocal 

relationship with the structural characteristics of the form. This mutuality 

of structural properties, geometry, and manners of building is seen in the 

quest for integration of structural, material and geometric computing that 

presumes novel, digital fabrication techniques (e.g. Deuss et al. 2014; 

Frick et al. 2016; Veenendaal et al. 2014). 

First, this paper examines the logic and characteristics of the ham-

mock structure, assessing some structure models by buckling length. It 

is followed by exploration of inverse analysis on the relationship between 

load and column displacement for designing the loading algorithm, 

and demonstration of how iterative loading processes gradually make 

columns straight in simulation. Second, our installation of a pavilion with 

the hammock structure is outlined. We show the way that the developed 

algorithm was implemented by making full use of motion captures, CAD, 

structural analysis software, and our unique handheld bazooka projec-
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tile tool incorporated with auditory guidance for shooting and loading 

fibers. A natural frequency test held in demolition of the pavilion is also 

illustrated. Finally, this paper revisits the algorithm by evaluating the data 

of column inclination and the actual amount of load observed during and 

after the installation.

The hammock structure as a fabrication technique has potential 

to be developed further as a fast and easy construction system of a 

temporary structure. This is a method whereby any temporary support 

during the construction is omitted. Unlike conventional tensile structures, 

including membranes and cable nets, our proposal does not require any 

strict control of tension. 

Figure 1: Birds-eye view of the overall geometry of the hammock- 
structure pavilion exhibited between November 28th and December  
10th, 2017.
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2. Structural and loading principles

2.1 Column Stiffness

The hammock structure relies on the idea of stiffening thin columns 

fixed at their base against buckling by applying load. The column heads 

are initially loosely connected by meshes which are considered to be 

hinge joints when modelled. This initial condition without load (Model 

(D-0) in Fig. 2) is equivalent to the model of a cantilevering column 

(Model (A) in Fig. 2). The columns of the hammock structure can bear 

a larger load than independent columns because of the stiffening effect 

of the tension in the meshes. When they are loaded, the columns are 

likely to sway horizontally. This leads to the change in sag and tension 

in adjoining meshes which causes a restoring force to act and move the 

columns back to their original positions.

The outcome of our two-dimensional, non-linear analysis allows us to 

confirm our hypothesis that the hammock structure becomes self-stabi-

lized by loading. The co-rotation method as shown in Krenk (2009), was 

employed to assess the geometrically non-linear behavior of a column 

when loading, enabling us to understand the relationship between axial 

force and vertical displacement. As Figure 3 shows, buckling is observed 

when the axial force reaches approximately 100 N, which is equivalent 

to a buckling length, Lk of 0.79L, where L is the actual column length 

(see Fig. 2). This simulation outcome is in agreement with Chen’s study 

(2014), and is close to the buckling length of a column with a hinge-fixed 

head and a fixed base, Lk = 0.7L (Model (B) in Fig. 2). Buckling strength 

is inversely proportional to the square of buckling length; therefore, the 

loading-self-stabilizing process makes the hammock structure approx-

imately 6 times stronger than a cantilevering column, Lk = 2.0L (Model 

(D-0)).

According to our non-linear analysis, supplementary membrane 

bracing enables the hammock structure to be further strengthened. Our 

unique idea is to add an auxiliary, lower mesh linking the upper middle 

parts of columns with the bottom faces of meshes (Fig. 4). As well as 

the main upper meshes, it is initially placed loosely, and its function as a 

brace is achieved by loading it (Model (E) in Fig. 2). In our analysis, the 

hammock structure column braced in this way exhibits approximately 170 

N buckling strength (Fig. 3), which is equivalent to Lk = 0.61L. It indicates 

that the strength performance of this braced model is comparable to 
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that of a fixed-ended column, whose buckling length is 0.5L (Model 

(C) in Fig. 2), and approximately 11 times to that of a cantilever column 

(Model (A)).

Figure 2: Buckling length (Lk) of the hammock structure. The bottom 
left Model (D-0) represents a hammock structure column without load, 
which is equivalent to a cantilevering column in Model (A). Model (D) 
represents Model (D-0)’s status after loading, which is similar to a co-
lumn with a hinge-fixed head and a fixed base like Model (B). In order to 
strengthen the hammock structure, as proposed in Model (E), supple-
mentary membrane bracing is added as an auxiliary, lower mesh linking 
the upper middle parts of columns with the bottom faces of meshes. 
This strengthening performance is comparable to that of a fixed-fixed 
column as Model (C).
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Figure 3: Relationship of vertical displacement and axial force of 
hammock structure, showing force-displacement relationship in Model 
(D), and Model (E) (right). According to our analysis, loaded hammock 
structure in Model (D) exhibits a buckling strength of approximately  
100 N, while with bracing in Model (E), its buckling strength increased to 
170 N (right).

 370 AAG2018  371
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hammock structure, showing force-displacement relationship in Model 
(D), and Model (E) (right). According to our analysis, loaded hammock 
structure in Model (D) exhibits a buckling strength of approximately  
100 N, while with bracing in Model (E), its buckling strength increased to 
170 N (right).

Figure 4: Supplementary membrane braces. These were installed as an 
auxiliary, lower mesh connecting the upper middle parts columns with 
the bottom faces of meshes (left) in the four positions indicated in the 
right image.

2.2 Inverse analysis and loading simulation
The loading algorithm that was implemented in the pavilion construction 

was designed presuming that self-stabilizing property of the ham-

mock structure can be effectively achieved by iterations of loading. We 

presumed that it enables us to maintain the balance of distributed load 

through the loading process. The developed algorithm was a product 

of the calculation of the optimal load distribution to attain a desirable 

column deformation. For this calculation, two three-dimensional models 

(Model (A_0) and Model (T_0) in Fig. 5) were created in line with the 

specifications of columns and mesh used for the installation, and a 

design principle for sectioning its geometry: the Voronoi diagram. The 

behavior of a mesh in loading was replaced with that of a pseudo-spring 

of equivalent vertical stiffness as shown in Model (T_0). This way of 

modelling enabled us to assess the target weight necessary to make the 

connected columns vertical as this load is equivalent to the compression 

force in the spring.

The inverse analysis is performed in two steps. First, Model (A_0) in 

Figure 5 is used to determine the Young’s modulus of the pseudo-spring. 

The model consists of four columns connected with the same number 

of strings that represent a mesh and meet at the Voronoi cell center. On 

the condition that the meshes do not extend under vertical loading at the 

intersection of the strings, the stiffness of the pseudo-spring is determi-

ned from the vertical displacement of the intersection point. The Young’s 

modulus of the spring (E) can be calculated by a formula relating vertical 

force (V) and deformation (∆), with the length (l) and cross-sectional 

area (A) as follows: 

                   E = Nl/A∆ (1)
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Figure 5: Voronoi section mesh models for loading simulation crea-
ted to analyze and define the relationship between a load and lateral 
displacement of a column. In the mesh model shown top left, there is 
a difference between the actual mesh center (orange) and the mesh 
force simulation center (purple). This difference exists because in the 
mesh forces simulation, the direction lines are drawn as tangentially 
to the mesh corner surface, and converge at a point lower than actual 
mesh center. Model (A_0) is used to determine the Young’s modulus of 
the pseudo-spring in Model (T_0), which replaced the loading with the 
spring. Section mesh models of Model (A_0) and Mode (T_0) in inverse 
analysis, schematizing the relationship of two Voronoi cell structure with 
a triad of a load, mesh, and columns.

 

Second, horizontal displacements are applied to the heads of the co-

lumns in Model (T_0) as shown in Figure 5, to make all columns upright. 

Then, compression forces corresponding to loads required to vertically 

straighten the columns are introduced into the pseudo-springs. It is 

considered that due to the non-linearity of the hammock structure, the 

columns are unlikely to be vertical by applying the required loads just 

once. Therefore, the loading process needs to be iterated several times. 

Note that the Young’s modulus of the pseudo-springs is assumed to be 

the same values through iteration.
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(Model (A_0) and Model (T_0) in Fig. 6). The bottoms of the columns 

are fixed, and the column heads, springs and meshes are modelled 

as joints hinged in all directions. Prior to the simulation, the Young’s 

modulus of each spring was calculated by applying a 10 N load vertically 

downward on each Voronoi center in Model (A_0). As a result of the 

vertical deformation the Young’s modulus was calculated for each spring 

as shown in Table 1, and for simplicity the five obtained values of the 

Young’s modulus were approximated to 2.5, 10.0 and 24.0 kN/cm2.

Figure 6: Prototype loading algorithm models with two 3 m high, 
9 mm-diameter columns and five pseudo-springs representing the load 
on the Voronoi centers of the meshes (left). Model (A_0) is used to deter-
mine the Young’s modulus of the pseudo springs in Model (T_0).

Table 1: Young’s modulus of pseudo-springs. 
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Figure 5: Voronoi section mesh models for loading simulation crea-
ted to analyze and define the relationship between a load and lateral 
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to the mesh corner surface, and converge at a point lower than actual 
mesh center. Model (A_0) is used to determine the Young’s modulus of 
the pseudo-spring in Model (T_0), which replaced the loading with the 
spring. Section mesh models of Model (A_0) and Mode (T_0) in inverse 
analysis, schematizing the relationship of two Voronoi cell structure with 
a triad of a load, mesh, and columns.
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Figure 7: Iterative loading simulation of actual workflow during the 
construction of pavilion by observing a part of the whole geometry that 
includes six columns and one mesh. 
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Finally, we conducted the simulation to test the prototype of the loading 

algorithm, which empirically divided a loading process into four steps. 

As Figure 7 describes, one fourth of a load (W0) estimated from Model 

(T_0) was input into Model (A_0), followed by iterated calculations of se-

cond, third and fourth loads (W1, W2, W3) and applications of W1/3, W2/2 

and W3 to its loading point. A load given to the loading point in each step 

is shown in Table 2. Figure 8 reveals the behaviors of the two columns 

through this manner of loading, demonstrating that the gaps with their 

upright positions was gradually reduced step by step. The tested algo-

rithm was ultimately put in practice in the pavilion construction, whose 

loading procedures, contrary to those of the simulation, were defined by 

the maximum amount of load per day (50 kg), rather than a predetermi-

ned number of loading iterations. In fact, its underlying principle, iterative 

loading, was also favorable for its implementation; an interval between 

two loading steps as such was suited to the procedures for scanning 

column inclinations embedded in the daily feedback routine.

Table 2: Loads in iterative loading.

Figure 8: Horizontal gap between column base and head in each step, 
demonstrating the behaviors of the two columns during step-by-step 
interactive loading.
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3. Case study
3.1 Approach to Construction and Design
The developed loading algorithm was experimentally put into practice in 

the installation of a full-scale pavilion with the hammock structure. This 

attempt was intertwined with our enthusiasm for suggesting and demon-

strating a novel method of computer-aided, human-centric fabrication. It 

presumes the integration of design and construction procedures through 

the application of up-to-date sensors, human capacity augmentation 

technologies, various software in design and simulation, and so on. For 

this installation we invented a bazooka projectile tool incorporated with 

an auditory guidance system, which guides a worker using three-dimen-

Figure 9: Acoustically guided aiming and shooting process of the  
pavilion installation using the bazooka projectile tool located in one of 
the shooting points.
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sional sound sources, corresponding to target positions for depositing 

fibers (Fig. 9). The positions of the column heads were detected by daily 

column inclination scanning, and taken into account at the next step 

of shooting through structural optimization. This iterative loading that 

underlies the logic of algorithm design fits with the feedback process 

of fabrication. The implementation of the algorithm was fully embedded 

in the use of the auditory guidance system, allowing (re-)calculation 

of target loading positions and weights to eventually make all columns 

straights.

The hammock-structure pavilion was built from November 6th to 

26th, 2017. The platform for this temporary architecture was 12 m by 

12 m, and 72.87 m² was covered with the hammock. The hammock’s plan 

was elliptical with a hole, reflecting not only aesthetic consideration, but 

also the relationship with shooting points as well as tool performance 

(Fig. 10). Coconut fibers were shot from three openings in scaffolds 

around the site and a workstation located in the hole, and the maximum 

shooting range of 7 m covers the whole pavilion area. The major axis was 

designed to run from north to south, because we expected that a seasonal 

north wind served as a supplementary projectile force to transport the 

fibers. 

The plan was partitioned into 48 Voronoi cells, and 128 thin, steel 

columns were placed at the vertices of these cells. There were three co-

lumn sizes: 13, 16 and 19 mm diameter steel rods, and their heights rang-

ed from 2.6 to 4.0 m. Their sizes were calculated to be as thin as possible 

based on the total target load, which was around 500 kg. The 19 mm 

columns were set at the periphery, and the 16 mm columns erected on 

the inner edge. Prior to installation, these columns were cambered, 

between 302 and 394 mm, so to ensure the columns finally straighten. 

This allowed the pavilion to be free from the use of any supplementary 

tension cables, which would prevent them from bending inward after 

loading. The cambers were set to be equal to estimated displacements. 

48 coir rope mesh sheets initially hung loosely from the heads of all 

columns, with varying surface areas between 0.80 m² and 2.87 m².
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Figure 10: Key compositions of the pavilion, including Voronoi-patterned 
meshes, diameter distribution of steel columns, and shooting range and 
shooting points based on a central working station and scaffolds.
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3.2 Loading algorithm implementation

The initial load of 1 kg fibers was equally distributed onto each mesh by 

hand. This was intended not only to prevent large deformation of the 

meshes, but it was also necessary to make a fiber screen on the surface 

of the meshes to prevent shot fibers from passing through any holes. 

Following this, we started loading using the developed sound guidan-

ce system as well as loading algorithm. The application of the sound 

guidance system involved the use of a set of motion captures, namely 

the HTC Vive, which include two sensors to track and control, and two 

base stations to follow motions and sensor coordinates in real time. The 

tracker was put on the top of a worker’s helmet, and the controller was 

installed on the body of the bazooka. The base stations were placed 

around a shooting point of the scaffolds and workstation. The closest 

point to a target mesh was selected for shooting. Before loading, a mass 

of compressed coconut fibers was processed and split into a number of 

4-6-g small pieces. Once a worker detected the source of continuous 

note, he/she was expected to aim the projectile tool at it, and continue 

to shoot fibers until required loading was complete.

Every night the scanning of the as-built conditions of the hammock 

structure took place and the distribution of the fibers for the next day 

was calculated through structural optimization of the verticality of the 

columns (Fig. 11). First, the inclinations of all columns were recorded 

utilizing the HTC Vive controller (Fig. 12). The coordinates obtained 

were of the bottom and two points at heights of 1 and 2 m. The coordina-

te data was used to redraw the column and mesh lines automatically by 

Grasshopper, a plug-in of Rhinoceros, allowing us to monitor deforma-

tions of the columns (Fig. 13). Second, we ran the developed loading 

algorithm, in order to simulate how to straighten the columns. Finally, 

calculation of the amounts of fibers to be loaded onto target meshes 

for the next day was made with our original structural analysis software. 

This series of daily feedback was initially conducted on November 17th, 

and 6 consecutive days between 20th and 25th.
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Figure 11: Loading process feedback loop, presenting the procedures 
and relationship between actual construction process and virtual  
simulation and optimization.

Figure 12: Daily column inclination scanning and tracking. The coordi-
nate data of a Vive controller can be input into Grasshopper by means 
of its plug-in (left). Every night the inclinations of all columns were 
measured and tracked by scanning the coordinates of their bottoms, 
and two points at heights of 1 and 2 m. As shown in the right image, a 
3D-printed, curved plate was installed in the controller, to make scanning 
more precise.  
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Figure 13: Structural and loading sequence optimization. (a) shows the 
Grasshopper generated columns based on inclination scanning. It allows 
mesh lines to be recreated as shown in (b). (c) displays estimated spring 
forces, which are used to calculate target loads and loading points for 
the next day (see subfigure (d)). 

3.3 Natural frequency test

Dismantling of the pavilion was also part of our research. After a two-

week exhibition we carried out a natural frequency test, where we phy-

sically shook it several times with some collaborators (Fig. 14). Seven 

people stood evenly around the pavilion and shook together in unison. 

We kept shaking the pavilion until it reached a steady state and vibrated 

in the natural frequency in the first mode. As damping was relatively 

large, we continued to keep shaking while measuring the length of time 

which it vibrated ten times. This test was conducted three times, and the 

results were 29.97, 29.53 and 29.90 sec. The time for one vibration can 

be regarded as a natural frequency and was 2.97 sec on average. Note 

that the amplitude of vibration every part of the pavilion showed was 

apparently different. It is thought that this dispersion was ascribed to the 

variety of the columns in specifications (e.g. height and diameter). The 

columns around 3.4 m in height experienced large amplitude; therefore, 

we assumed this size of column for further analysis (see Chapter 4).

Following this, fibers loaded on the meshes were disassembled 
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and measured by scales. Due to the lack of equipment to quantify the 

amount of fibers in shooting, the actual weights on the meshes were 

unknown during the installation. As well as the observation of the natural 

frequencies, this direct measurement of the weights enables us to as-

sess the structural behavior under horizontal seismic force.

Figure 14: Natural frequency test. The pavilion was manually shaken 
three times to measure the length of time which it vibrated ten times.
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4. Results

4.1 Iterative loading and column inclination 

Figure 15 demonstrates the relationship between the total amount of 

load per mesh that the loading algorithm suggested through the shoo-

ting process, and the actual weights directly measured in dismantling of 

the pavilion, indicating that the algorithm worked properly. Though some 

construction errors were likely to exist, most points are plotted along a 

45-degree line. The dispersion of the points could be minimized if we 

knew the weight of the loaded meshes each day.

Figure 15: Relationship between target of load suggested by algorithm 
and actual weight of fibers, which was measured during the dismantling 
of the pavilion. Most points demonstrate the effectiveness of the loading 
algorithm in construction.
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Figure 16: Column deformation. The left image shows the column 
inclination on Day 1, with the appropriate pre-cambering of the columns 
on the periphery columns. The right image exhibits the deformation of 
Day 7, indicating that the optimization algorithm is effective in most of 
the cases. 

A comparison of the differences of column coordinates on the first and 

last days of loading allows us to examine how some underlying assump-

tions in our model building affected the outcomes of the implementation 

of the loading algorithm. As Figure 16 shows, many columns in Zone A, B 

and C experienced a decrease in distances from their upright positions. 

This can be attributed to the effective operation of the loading algorithm, 

as well as to the appropriate pre-cambering of the columns on the 

periphery and inner edge. In theory, the algorithm was developed based 

on models where peripheral meshes were fixed; in practice, they were 

linked with the 19 mm and 16 mm columns which are stiffer than the oth-

ers with the diameter of 13 mm. In order to make the boundary condition 

of the edge meshes closer to fixed ends, the columns on the periphery 

and inner edge were pre-cambered instead. The amounts of cambering 

were calculated according to estimated loads to make them vertical at 

the end of loading processes. It can be considered that by appropriate 

cambering, a similar boundary condition was created to fixed ends in the 

areas where the algorithm worked well. (Fig. 16). 
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Figure 17: Final loading and deformation outcome indicating large devi-
ation in Zones D and E on the right image, which indicates the ineffec-
tiveness of the algorithm in these two zones. Left: total target weight on 
each mesh. Right: comparison of column positions on Day 1 and Day 7.

By contrast, Figure 17 reveals that the loading algorithm was not so 

effective in Zone D and E. Most columns on the periphery rarely moved 

through a series of iterative loading. It is thought that this had something 

to do with the fact that no fiber was loaded on peripheral meshes for 

many days. When the heads of adjoining columns are inclined towards 

the same direction, compression force of a pseudo-spring can be ne-

gative in our model (Model (a) in Fig. 18). As the negative compression 

corresponds not to loading but to taking away the loads, our algorithm 

was designed to estimate the amount of load for a next shooting step is 

0 kg as Model (b) in Figure 18 shows. If tension in a pseudo-spring were 

taken into account in calculation of load in some way or other, the loa-

ding algorithm would have worked better by loading the larger amount 

of fibers on the peripheral meshes in Zone D and E. 

In addition, because the columns were connected just to the target 

points and not connected each other along the boundary of each mesh, 

some of the periphery columns were connected to only one target point 

with a string which represents a mesh. Consequently, when the direction 
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Figure 17: Final loading and deformation outcome indicating large devi-
ation in Zones D and E on the right image, which indicates the ineffec-
tiveness of the algorithm in these two zones. Left: total target weight on 
each mesh. Right: comparison of column positions on Day 1 and Day 7.
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of pre-cambering was far off from the string, for example in Zone D in 

Figure 16, the columns were just twisted around their axes keeping the 

cambered shape.

Figure 18: Section models of peripheral meshes and columns, analyzing 
the cause of deviation in peripheral areas. The images in the first row 
indicate the deformation in actual cases while the bottom right indicates 
the ideal case.

4.2 Natural frequency

When calculating the natural period of such a structure, non-linearity 

should be taken into consideration. A 3.4 m cantilevering 13 mm column 

is chosen as a representative column. For comparison we applied a 

10 N lateral load incrementally on three simple models; a cantilevering 

column, a cantilevering column with constant 42 N vertical load and a 

hammock structure with constant 42 N vertical load on each mesh (Fig. 

19 (a)-(c) respectively). The mesh properties are as defined in Section 

2.1 and the vertical load is the average weight of the actual fibers sup-

ported by each column. It is assumed that the upper half of the column’s 

mass contributes to the vibration and the bottom half of the column’s 

mass is supported by the base and so is disregarded in the vibration 

calculation. The total mass at the column head, including the mass of the 

fibers, is 5.9 kg.
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For (a), the lateral stiffness is easily calculated as 3 EI/L3 = 22.5 N/m, 

however, for (b) when the weight on the column is relatively heavy, the 

P – ∆ effect cannot be ignored for large displacements. As shown in 

Figure 20, when displacements are small the initial stiffness of (a) and 

(b) are similar, but as displacement increases, the stiffness of (a) rema-

ins constant but that of (b) reduces. At a displacement of 400 mm, the 

lateral stiffness of (b) is 14.6 N/m and the corresponding natural period 

is 4.00 sec, which is much longer than the measured period 2.97 sec.

Figure 19: Analytical models used to simulate lateral load. (a) Cantileve-
ring column model with lateral incremental load. (b) Cantilevering column 
with constant weight load on top and lateral incremental load. (c) Model 
of hammock structure with constant weight on the mesh and lateral 
incremental load.

Figure 20: Relationship of lateral load and horizontal displacement of 
three types of column structure model, along with that of the whole pavi-
lion of actual measurement and on the assumption of a parallel spring. 
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of pre-cambering was far off from the string, for example in Zone D in 

Figure 16, the columns were just twisted around their axes keeping the 

cambered shape.

Figure 18: Section models of peripheral meshes and columns, analyzing 
the cause of deviation in peripheral areas. The images in the first row 
indicate the deformation in actual cases while the bottom right indicates 
the ideal case.

4.2 Natural frequency

When calculating the natural period of such a structure, non-linearity 

should be taken into consideration. A 3.4 m cantilevering 13 mm column 

is chosen as a representative column. For comparison we applied a 

10 N lateral load incrementally on three simple models; a cantilevering 

column, a cantilevering column with constant 42 N vertical load and a 

hammock structure with constant 42 N vertical load on each mesh (Fig. 

19 (a)-(c) respectively). The mesh properties are as defined in Section 

2.1 and the vertical load is the average weight of the actual fibers sup-

ported by each column. It is assumed that the upper half of the column’s 

mass contributes to the vibration and the bottom half of the column’s 

mass is supported by the base and so is disregarded in the vibration 

calculation. The total mass at the column head, including the mass of the 

fibers, is 5.9 kg.
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For the hammock structure (c), the restoring force is generated by the 

change in sag of the meshes. This stiffening effect only is non-linear, but 

it cancelled with the above-mentioned P – ∆ effect and the hammock 

structure as a whole behaves very linear. The lateral stiffness is 28.8 N/m 

and the natural period is 2.80 sec which is close to the measured period. 

It can be said that the hammock structure not only stiffens the column 

but also allows a large deformation against the P – ∆ effect by cancel-

ling it with its own non-linearity.

Furthermore, assuming simple harmonic motion we can calculate 

the lateral stiffness of the pavilion from the measured natural period 

(2.97 sec) and the average mass on an individual column head (5.9 kg). 

The result is 26.4 N/m which is showed as a black solid line in Figure 

20. For comparison the natural period can be approximately calculated 

assuming that all the columns act like a parallel spring as a whole like 

when all the columns are connected with a solid roof or tightly tensioned 

cables and that each column behaves as a column with constant weight 

on their head like (b) in Figure 20. The total lateral stiffness is calculated 

in the same way as 7,317 N/m and the total mass is 764 kg (438 kg for 

the fibers, 326 kg for the upper half of the columns). The natural period 

is calculated as 2.00 sec and the corresponding stiffness for the mass of 

5.9 kg is 56.5 N/m which is showed as a black dotted line in Figure 20. 

As these two stiffnesses are relatively close compared with the cantile-

vering column with weight, it can be said that just by flexibly connecting 

the columns together you can get rather stiff structure. It can be said 

that the lateral stiffness of the pavilion is somewhere between the two 

ideal conditions; a single cantilevering column with weight and a single 

hammock structure with weight, because the 19 mm and 16 mm columns 

as the actual boundary condition are somewhere between pin supports 

and roller supports which correspond the two conditions.

5. Conclusion
The development of the loading algorithm was a process of exploring 

the final outcome of self-stabilization of the hammock structure, and se-

eking the way to incarnate and scale up it on site. The inverse analysis, 

loading simulation, and the pavilion installation as a full-scale experiment 

allowed us to explore the structural property of the hammock structure 

in natural frequency, as well as its non-linear, self-stabilizing nature. 
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The application of a set of motion captures to daily 3D scanning was 

crucial to putting the algorithm into practice. A plug-in of this power-

ful tool made column coordinate data gained by using it importable to 

Rhinoceros and Grasshopper in real time, allowing us not only to run the 

algorithm, but also to examine the input data in CAD as well as structu-

ral analysis software.

The structural characteristics of the hammock structure was exa-

mined for both vertical and lateral load. For vertical loads, the stiffening 

effect was verified to make the buckling load more than 6 times larger 

than a cantilevering column. Furthermore, utilizing supplementary 

membrane bracing it can be even more than 10 times larger. For lateral 

loads, our analysis revealed that the lateral stiffness of a single-column 

hammock structure is almost constant regardless of the displacement, 

unlike a normal cantilevering column under the P-effect. The stiffening 

effect was also detected experimentally by manually shaking the whole 

structure.

In short, the analysis of a set of measured data in load and co-

lumn deformation revealed that in the pavilion installation, the loading 

algorithm worked properly, particularly in the areas whose boundary con-

ditions were closer to the models underlying it. This enabled us to find 

some causes of its partial failure associated with the way of modelling, 

and examine for future improvement.
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Abstract 
Powder-based additive manufacturing strategies such as binderjet 3D 

printing are increasingly attractive and promising for architecture due 

to their fine resolution, their capacity to precisely distribute material 

in three dimensions and the availability of very large scales. Building 

elements can no longer just be designed only by their outer shape, but 

throughout their entire volume. Existing design software based on a 

boundary representation of the geometry is unable to fully exploit the 

geometric freedom of this technology.

We outline the particular geometrical features for additive manu-

facturing and identify existing limits of conventional CAD systems. 

We describe the alternative representation of geometry based on 

volumetric modelling, present specific volumetric operations for design 

and optimization of 3D printed elements and highlight their potential 

for architecture. We present two applications in the context of 3D 

printing for architecture at different scales. One of them operates on a 

micro-scale for designing specific object properties by geometry. The 

other one is at an architectural scale, the processing of high-resolution 

mesh inputs for the preparation of production data of large 3D printed 

bricks for an architectural structure. 

1. Introduction 

1.1 Geometry for large scale additive manufacturing

Additive manufacturing bears the great potential of not being constrai-

ned by tool accessibility constraints, as subtractive manufacturing is. 

Instead, objects can be differentiated throughout in three dimensions, 

not only on the outer surface but also on the inside. Binderjet 3D prin-

ters further add to these benefits their high resolution and large scale. 

The biggest available printer, developed by the company Voxeljet, offers 

a resolution of 40 000 × 16 000 × 3 000 individually addressable voxels at 

a size of 4 × 2 × 1 m. In this printing process, the unbound sand of already 

produced layers always supports the next layer. This allows for printing 

of cantilevering parts, hollow structures, internal voids, etc. Material 

can be placed – or rather: solidified – precisely according to functional 

needs and basically at a detail level of a grain of sand.
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1.2 Potential of volumetric modelling vs. BREP 

Most CAD packages describe geometric objects as a collection of 

individual surfaces that are joint along their edges to form the object’s 

boundary. Boundary representations (BRep) are highly efficient and 

offer a lot of flexibility. The flip side of this representation is that objects 

can end up with holes, cracks, self-intersections and non-orientable 

faces. Even for perfectly closed BReps, problems can occur once they 

need to be offset to form a shell of a certain thickness. While such 3D 

models can be sufficient for visualization purposes or for subtractive 

manufacturing CAM software, they are unsuitable for an additive manu-

facturing process.

As its name suggests, volumetric modelling does not primarily deal 

with free-floating surfaces but with the definition of the entire space and 

describes shapes as volumes. The 0-level iso-surface always unambi-

guously divides inside from outside, and therefore slicers for the prepa-

ration of job files have no problem in determining where to apply binder. 

The bed of powder, which is always full, is conceptually close to volume-

tric modelling and we therefore consider them a promising pairing.

1.3 Function representation 
Many algorithms used in volumetric modelling, e.g. marching cubes (Lo-

rensen and Cline 1987) for the generation of an iso-surface mesh, have 

their origins in medical imaging. With CT and MRI scans, this domain 

provides data as a stack of 2D images that together form a volume of 

voxels. The methods presented in chapter 3 also start by defining a 

three-dimensional grid of voxels at the required resolution first and then 

profit from the organisation of this data-structure to perform geometric 

operations on high resolution input geometry at speed.

Volumetric modelling however includes also the description of 

shapes as the result of a function (function representation, FRep) that 

converts any point coordinate into a real value, ℝ³ → ℝ. Many geome-

tric primitives (sphere, box, cone, cylinder, plane, platonic solids, etc.) can 

be described not explicitly by placing vertices in space and connecting 

them with edges and faces, but instead as a function v=f(x,y,z). In this 

formula, v is the distance of point (x,y,z) to the shape’s surface. All the 

point locations where this function evaluates to v=0 form the skin of 

the object. All those resulting in a negative value lie inside the object, 

all those with positive values lie outside of it. Such a function is called a 
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distance function and space is defi ned as a signed distance fi eld (SDF).

The combination of objects is now not a geometrical problem of 

diffi cult intersection calculations, but purely a matter of arithmetic (Fig. 

1). If object A is defi ned by a=f(p) and object B is defi ned by b=g(p) 
(p ∈ ℝ³), then the Boolean union A∪B is defi ned as min(a,b), the 

intersection A∩B as max(a,b) and the subtraction A–B as max(a,-b). 
Many more combinations with a and b are possible e.g. to produce 

smooth blends, chamfer angles, stepped transitions or V-shaped grooves 

along the intersection curve. To convert a solid object into a shell along 

its surface, it suffi ces to calculate the new value v’ as v’=abs(v+(f-
0.5)*d)–d/2, where d is the thickness of the shell and f is a position 

factor that is f=0 if the shell is offset to the outside, f=1 if offset to the 

inside and f=0.5 if half of d is on either side of the original surface.

Figure 1: Distance fi elds and Boolean operations; top left, circle; bottom 
left, rectangle; top middle, circle plus rectangle; bottom middle, circle 
rectangle intersection; top right, circle minus rectangle; bottom right, 
rectangle minus circle

With function representation, objects can be combined into arbitrarily 

complex constructive solid geometry (CSG) trees. These defi nitions are 

completely resolution independent. A discretisation of space e.g. into a 
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With function representation, objects can be combined into arbitrarily 

complex constructive solid geometry (CSG) trees. These defi nitions are 

completely resolution independent. A discretisation of space e.g. into a 



 396 AAG2018  397

three-dimensional grid of voxels for the generation of a mesh approx-

imation or into a two-dimensional slice for layer-wise feeding of a 3D 

printer can be done by querying the CSG tree for every point in the grid 

at the required resolution.

1.4 Related work
Volumetric modelling has always been developed in parallel to surfa-

ce modelling in the history of computational geometry, ever since the 

early days of computer graphics (Blinn 1982). Some authors distinguish 

implicit from parametric surfaces (Bloomenthal et al. 1997). We follow the 

naming function representation FRep (as opposed to BRep) proposed 

by Pasko et al. (1995).

The work we present draws from many different branches and 

industries – from pure mathematics over game design to aerospace 

engineering – and unites many of the methods in a comprehensive 

framework. There are many commercial and open source software 

packages available that integrate some of the concepts of volumetric 

modelling. Most of them do not specifically address architecture, and all 

of them have specific shortcomings for a direct application in the design 

and fabrication of 3D printed architecture.

Monolith (Michalatos and Payne 2013) which puts the main focus really 

on the voxel (3D pixel) aspect and is an attempt to create a 3D image 

editor by offering many freehand editing tools like swirls and smear. 

With the multi-channel property of the voxels, the main target output 

of Monolith is multi-material 3D printing. The other project is Symvol by 

Norwegian start-up Uformia (Vilbrandt, Pasko, and Vilbrandt 2009). Their 

mission is mainly to provide a software package, that allows the genera-

tion of shapes which are closer to natural shapes, not homogenous and 

solid either but internally differentiated.

2. Performative microstructures 

Making 3D printed parts lighter can often lead to significant cost sa-

vings, both in production (expensive raw materials), and in operation (e.g. 

aerospace industry). The central question is where material can most 

efficiently be omitted while still maintaining the required performance? 

On the scale of the overall form, topology optimisation (Bendsøe and 
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Kikuchi 1988, Bendsøe and Sigmund 2003) has become a valuable so-

lution, because AM finally allows the production of the resulting shapes 

without the need to redesign due to fabrication constraints such as tool 

head access or demoulding drafts.

On a smaller scale within the part itself, various degrees of porosity 

can be introduced. For configurations of linear sticks combined into 

spatial trusses, the term lattice has become prevalent. We also present 

a second approach based on continuous convoluted surfaces for which 

we employ the more general term microstructures. Any porous geometry 

is constrained by the need for both the solid and the void part being fully 

connected – the solid part for optimal force flow and the void part to 

enable unbound material removal.

2.1 Lattices
The first approach defines the microstructure as a spatial truss of skeletal 

lines (hence the name lattice), that are then thickened by pipes along 

these axes. Any collection of lines is in theory possible, from completely 

random over stochastic (e.g. foam-like, along the edges of 3D Voronoi 

cells) to strictly ordered in a triply periodic orthogonal grid. For the triply 

periodic structures in Figure 2 (left), only one octant of the unit cell needs 

to be defined. This octant is then mirrored across all the three planes XY, 

YZ and XZ before being array-copied to fill the entire space.

Figure 2: right, 9 examples of skeleton-based microstructures, each 8 
(2 × 2 × 2) unit cells, front left: octet truss; left, positive octant, point 0 at 
the center of the unit cell, 1 on X-axis, 3 on Y-axis, 4 on Z-axis, example 
node locations.
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For the thickening of the skeletal lines, two different methods are 

compared here. The construction based on BRep typically constructs 

two rings of points at either end of each line with a predefi ned offset 

from its end points and connects the rings to form cylinders. For every 

node, all the rings’ points are collected, a convex hull polyhedron is 

calculated, and the faces between the cylinders are added to the fi nal 

mesh. This works well for many cases and produces reasonably small 

meshes. Possible sources of failure are very acute angles between two 

connected lines or small surface areas within loops of lines, which result 

in self-intersecting meshes.

The construction based on FRep treats the thickening as the Boo-

lean union of multiple cylinder functions. Whenever internodal areas 

become too small or the pipes too thick for an opening, the topology 

is just altered without causing any error (see Fig. 3). The lines do not 

need to connect end-to-end but can also form T-joints. The resulting 

microstructure defi nes an SDF and can be combined in the CSG tree 

just as any other object.

Figure 3: Skeleton thickened with FRep cylinders; the hole just turns 
into a solid node as diameter increases, without causing topological 
problems.

2.2 Microstructures

The second approach uses not distance but trigonometric functions for 

the determination of v=f(x,y,z). A large number of triply periodic mini-

mal surfaces (TPMS) have been discovered since the fi rst was descri-

bed by Schwarz (1871) and more added to the set by Schoen (1970). As 

trigonometric functions oscillate between -1 and 1, the 0-level iso-surface 

divides space into solid and void at equal shares (porosity 0.5). Instead 

of this split, the surface can be given a thickness (shell) which results 

in two highly intertwined but never touching volumes of air. A practical 

use case thereof could be the internal chamber of a heat exchanger. 

Other parameters that can be varied are the wavelength or – by applying 
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an inverse transformation matrix to the query point – the rotation and 

starting point of the grid.

The collection in Figure 4 shows 3D printed 50 × 50 × 50 mm samples 

of some of these surfaces, with different wavelengths, orientations, and 

with or without shell, and various spatial noise functions (Perlin, cubic, 

cellular, etc.) forming the control group. They all have a porosity of 0.5 in 

common and are the basis for the tests described in chapter 2.3.
 

Figure 4: 3D printed samples of various micro-structures, including 
TPMS and noise.

The addition of microstructures to the interior of parts can alter their 

physical properties, e.g. the behavior under compressive load. Physical 

tests have shown that completely solid 3D printed sandstone parts 

(porosity 0) resist forces of 6–8 kN, before a diagonal crack leads to to-

tal failure (see Fig. 5). Porous parts differentiated with a micro-structure 

as those shown in Figure 4 stand more than twice as much deformation 

until building up a resisting force and do not fail completely but continue 

resisting with ± 60 % of the maximum force while being squished.
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Figure 5: Different failure behavior under compressive load; left and 
middle, total failure crack of solid volume; right, sponge-like squishing of 
microstructure.

2.3 Designing with microstructures
The lattices and micro-structures (described in the previous two chap-

ters) represent a function v=f(x,y,z) to defi ne a distance fi eld as well, 

just as any other primitive. Their degree of porosity can continuously be 

blended from massive to lofty along a spatial gradient or based on local 

structural needs. They can be combined with other objects using a varie-

ty of operations. Basic Boolean operations (union, subtraction and inter-

section) but also smooth blends between sharp and round features by 

exponential or logarithmic functions enable the designer to create part 

geometries (Fig. 6) diffi cult to achieve in conventional CAD packages.

Figure 6: Complex nodes joining different pipe objects, shelled, partially 
fi lled with a micro-structure; generated from simpler primitives assemb-
led through the CSG tree.
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2.4 Data structures and Implementation

Three-dimensional objects, for applications like rendering or additive 

manufacturing, are defined by their skin separating inside from outside. 

To generate that limit surface using a marching cubes algorithm, only the 

distance values for the voxels that contain a snippet of the surface need 

to be calculated at the maximum resolution. Calculation and storage of 

distance values for dense voxel grids is computationally very expensive 

and multiplies by a factor of eight upon cutting the voxel’s edge length in 

half. Depending on the application, for extensive regions of the volume a 

calculation of a precise distance value is not required and only a coarse 

approximation of the value will suffice. One solution to this challenge 

is to organize the data in a so-called sparse voxel octree (SVO), which 

works as follows:

1. The root cell is created to comprise the region to be queried (e.g. 
as the minimum bounding cube of all objects).

2. Each cell stores its center point, edge length e, a list of child cells 
(empty at first) and its subdivision level n. The root cell has level 
n=0.

3. The cell’s center location is fed in as query point into the cumula-
ted distance functions of the CSG tree.

4. If the returned distance is smaller than √3/2*e (half the cell’s 
room diagonal), eight child cells are created by splitting the original 
cell in two along all axes X, Y and Z. The level of the child nodes 
is n+1 and their edge length e/2.

5. The process from step 3 is recursively repeated for all the eight 
child nodes, until some specified maximum subdivision level is 
reached.

Figure 7 shows the result of this procedure as the 2D equivalent, a qu-

adtree subdivision. The color is given by the distance of the cell’s center 

point to the boundary of the shape, the number in the squares indicates 

n, the level of subdivision (omitted above 5 for readability, maximum level 8).
 



 400 AAG2018  401

     

Figure 5: Different failure behavior under compressive load; left and 
middle, total failure crack of solid volume; right, sponge-like squishing of 
microstructure.

2.3 Designing with microstructures
The lattices and micro-structures (described in the previous two chap-

ters) represent a function v=f(x,y,z) to defi ne a distance fi eld as well, 

just as any other primitive. Their degree of porosity can continuously be 

blended from massive to lofty along a spatial gradient or based on local 

structural needs. They can be combined with other objects using a varie-

ty of operations. Basic Boolean operations (union, subtraction and inter-

section) but also smooth blends between sharp and round features by 

exponential or logarithmic functions enable the designer to create part 

geometries (Fig. 6) diffi cult to achieve in conventional CAD packages.

Figure 6: Complex nodes joining different pipe objects, shelled, partially 
fi lled with a micro-structure; generated from simpler primitives assemb-
led through the CSG tree.

 400 AAG2018  401

2.4 Data structures and Implementation

Three-dimensional objects, for applications like rendering or additive 

manufacturing, are defined by their skin separating inside from outside. 

To generate that limit surface using a marching cubes algorithm, only the 

distance values for the voxels that contain a snippet of the surface need 

to be calculated at the maximum resolution. Calculation and storage of 

distance values for dense voxel grids is computationally very expensive 

and multiplies by a factor of eight upon cutting the voxel’s edge length in 

half. Depending on the application, for extensive regions of the volume a 

calculation of a precise distance value is not required and only a coarse 

approximation of the value will suffice. One solution to this challenge 

is to organize the data in a so-called sparse voxel octree (SVO), which 

works as follows:

1. The root cell is created to comprise the region to be queried (e.g. 
as the minimum bounding cube of all objects).

2. Each cell stores its center point, edge length e, a list of child cells 
(empty at first) and its subdivision level n. The root cell has level 
n=0.

3. The cell’s center location is fed in as query point into the cumula-
ted distance functions of the CSG tree.

4. If the returned distance is smaller than √3/2*e (half the cell’s 
room diagonal), eight child cells are created by splitting the original 
cell in two along all axes X, Y and Z. The level of the child nodes 
is n+1 and their edge length e/2.

5. The process from step 3 is recursively repeated for all the eight 
child nodes, until some specified maximum subdivision level is 
reached.

Figure 7 shows the result of this procedure as the 2D equivalent, a qu-

adtree subdivision. The color is given by the distance of the cell’s center 

point to the boundary of the shape, the number in the squares indicates 

n, the level of subdivision (omitted above 5 for readability, maximum level 8).
 



 402 AAG2018  403

Figure 7: Quadtree visualization.

The following table (Tab. 1) compares the octree method with a full vox-

el space numerically in terms of number of elements. The test geometry 

consists of the union of two spheres from which a third sphere is sub-

tracted. For other objects, these numbers would differ, depending on the 

ratio between their surface and the occupied volume. The last column 

shows that after 7 steps, there are already 15 times as many voxels as 

there are octree cells and 60 times as many after 9 steps.

The column “growth rate of octree cells” in Table 1 shows by what 

factor the total NO increases. In the first two division steps, this is close 

to eight as the shape passes through most of the cells. From the third 

step on, this number quickly stabilizes around four (see highlight and 

Fig. 8). A doubling of the resolution therefore only increases the number 

of octree cells by 22=4 while the number of voxels grows by a steady 

rate of 23=8. This is because the tree is only refined along the surface 

(2D) and not the entire volume (3D).
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Table 1: numerical comparison between voxel space and octree 
subdivision.

Figure 8: growth rate of the number of octree cells from one subdivision 
level to the next.

Timed test runs over 20 iterations of distance fi eld calculations returned 

an average of 483 ms for the voxel grid and 91 ms for the octree, a 

speedup by a factor of more than fi ve.

3. From high resolution meshes to 3D 
printed bricks 
Architectural designs are usually not generated in voxel space but 

constructed in CAD Software based on BRep. The data is not represented 

in a 3D printable format. Multiple entities might be self-intersecting, have 

holes, contain overlapping or duplicate surfaces, as well as non-aligned 

normal orientations. One cannot assume clean two-manifold models but 

rather a “triangle soup”.

This chapter introduces volumetric procedures to turn these meshes 

into printable volumes. The voxelization of high resolution meshes is 

division step number of 
cells per axis

number of 
voxels NV

number of 
octree cells NO

growth rate of 
octree cells

ratio 
NO:NV

1 2 8 9 9.000 0.889

2 4 64 73 8.111 0.877

3 8 512 529 7.247 0.968

4 16 4'096 2'177 4.115 1.881

5 32 32'768 8'509 3.909 3.851

6 64 262'144 33'913 3.986 7.730

7 128 2'097'152 138'857 4.095 15.103

8 256 16'77'216 551'377 3.971 30.428

9 512 134'217'728 2'210'033 4.008 60.731
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discussed and a novel approach to create stiffening ribs in voxel space 

is presented. It is shown that by using only simple Boolean operations 

and voxel propagation algorithms, all necessary geometric operations 

can be done in a robust way, allowing optimized print data to be created. 

The results are demonstrated using the example of the printed bricks of 

the project Digital Grotesque.

3.1 Voxelization of high resolution polyhedral meshes
Volumetric representation is not only useful for the creation of shapes 

from the combination of geometric primitives but can also be derived 

from complex polyhedral meshes with many individual facets. The pro-

cess of voxelization converts such data into a three-dimensional volume 

of data values. One challenge of this process is that the computation 

time rises in relation to both the number of triangles as well as the reso-

lution of the voxel space. 

Therefore, instead of calculating distance values for all data points, 

we only calculate the shell distance field in an exact way, leading for 

small triangles to similar optimization effects as with the octree da-

ta-structure described above (Cohen-Or and Kaufman 1995, Jones,  

Baerentzen, and Sramek 2006). For each triangle of the input mesh, 

we only measure the distance to voxels within a predefined threshold. 

In order to detect those data points in fast manner, we apply several 

conditional filters in sequence. Only certain points are analyzed (see Fig. 9), 

namely those which are:

1.  Within the bounding box of the triangle.

2.  Close enough to the plane defined by the triangle.

3.  Close enough to the triangle itself. 3 cases are distinguished; 
projected point is closest:

a.  to an edge

b.  to a vertex

c.  to the plane of the triangle

As each triangle is only inspected once, this procedure can be optimized 

by representing this triangle in a form which allows a quick analysis of 

the distance to a point.
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Figure 9: left, Implementation of distance to triangle measurement; right, 
the resulting distance shell around the mesh in section.

3.2 Defi nition of interior regions
Another challenge of converting non-manifold meshes into printable 

data lies in defi ning interior and exterior regions. While several strategies 

exist to determine whether a point lies inside or outside a boundary of a 

polyhedron, these methods fail when meshes are not clean (closed and 

manifold).

Therefore, we detect interior regions within the volumetric repre-

sentation. As a voxel-space can also be regarded as a network of cells, 

network algorithms to calculate reachability using connectivity methods 

apply here. We classify the inside and outside of the voxel model with a 

fl ood fi ll approach (Khudeev 2005). Initially, only a single starting point 

on the outside needs to be defi ned. Every voxel that can be reached 

without crossing a voxel that is closer than a certain threshold to the 

surface will be outside as well. 

With this method, it is also possible to turn an open surface into a 

volume (Fig. 10 and Fig. 11). An additional boundary volume is introdu-

ced. Every data point which cannot be reached without crossing either 

the voxelized surface or the boundary surface and which is contained by 

this boundary volume is considered to be inside.

Figure 10: Flood fi ll operation with a cube as border-constraint.
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Figure 10: Flood fi ll operation with a cube as border-constraint.
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Figure 11: Conversion of a mesh surface into a solid volume.

3.3 Offset operations

Offset operations are often needed in architecture, for example to turn a 

solid volume into a shell with a certain thickness, or to turn a surface into 

a solid volume. Offset operations are challenging in mesh representation 

(Farouki 1985), because offsets can self-intersect, leading to changes in 

topology. These operations are also slow and not robust due to rounding 

errors.

In volumetric space, offset operations are easier. In a continuous field 

in which all data points contain the distance value, variable offsets can 

be extracted at any time with a Boolean operation: everything within a 

certain distance is considered to be inside (see also 1.3).

One challenge is that the complete calculation of a continuous 

distance field for a high-resolution mesh is computationally expensive. 

Therefore, we work with an approximation based on the shell distance, 

described above. Different approaches are documented for calculating 

an approximated distance field (Jones, Baerentzen, and Sramek 2006). 

We use a scheme based on the chamfer distance transform (Rosenfeld 

and Pfaltz 1966), in which the distance is calculated using the voxel 

network, avoiding expensive Euclidean distance calculations (see Fig. 12). 

Here, for short distances, the precision is sufficient for architectural 

applications. 

We implemented sweeping and wave front schemes, which have 

different running speeds and memory consumption depending on 

the geometric features and the computational implementation. The 

sweeping scheme travels through the entire voxel field in two specific 

directions, once from the lower left front corner to the upper right back 

corner, and once in the opposite direction. The wave front approach 
Figure 12: 2D Chamfer 
distance values
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requires a more complex data handling and travels from close points to 

the furthest regions. 

It is possible to calculate an approximated 3D Voronoi tessellation 

based on the chamfer distance transformation without additional cal-

culations. Each cell not only assigns the next distance to its neighbors, 

but also passes the information to which point or object this distance is 

measured. At the end, regions which have the same closest object are 

within a common Voronoi cell.

One way of calculating locally adapted offsets is to give different dis-

tance functions to separated entities (for example to each triangle), or to 

measure the distances between cells in a different manner according to 

their spatial position. In addition, the direction can be taken into account, 

creating variable offsets to horizontal or vertical elements.

Figure 14: Continuous distance field based on chamfer distance trans-
form for offset operations.

Figure 15: Robust offset operations on complex meshes.

Figure 13: Voxel-based 3D Voronoi diagrams of two different sets of 
triangles.



 406 AAG2018  407

Figure 11: Conversion of a mesh surface into a solid volume.

3.3 Offset operations

Offset operations are often needed in architecture, for example to turn a 

solid volume into a shell with a certain thickness, or to turn a surface into 

a solid volume. Offset operations are challenging in mesh representation 

(Farouki 1985), because offsets can self-intersect, leading to changes in 

topology. These operations are also slow and not robust due to rounding 

errors.

In volumetric space, offset operations are easier. In a continuous field 

in which all data points contain the distance value, variable offsets can 

be extracted at any time with a Boolean operation: everything within a 

certain distance is considered to be inside (see also 1.3).

One challenge is that the complete calculation of a continuous 

distance field for a high-resolution mesh is computationally expensive. 

Therefore, we work with an approximation based on the shell distance, 

described above. Different approaches are documented for calculating 

an approximated distance field (Jones, Baerentzen, and Sramek 2006). 

We use a scheme based on the chamfer distance transform (Rosenfeld 

and Pfaltz 1966), in which the distance is calculated using the voxel 

network, avoiding expensive Euclidean distance calculations (see Fig. 12). 

Here, for short distances, the precision is sufficient for architectural 

applications. 

We implemented sweeping and wave front schemes, which have 

different running speeds and memory consumption depending on 

the geometric features and the computational implementation. The 

sweeping scheme travels through the entire voxel field in two specific 

directions, once from the lower left front corner to the upper right back 

corner, and once in the opposite direction. The wave front approach 
Figure 12: 2D Chamfer 
distance values

 406 AAG2018  407

requires a more complex data handling and travels from close points to 

the furthest regions. 

It is possible to calculate an approximated 3D Voronoi tessellation 

based on the chamfer distance transformation without additional cal-

culations. Each cell not only assigns the next distance to its neighbors, 

but also passes the information to which point or object this distance is 

measured. At the end, regions which have the same closest object are 

within a common Voronoi cell.

One way of calculating locally adapted offsets is to give different dis-

tance functions to separated entities (for example to each triangle), or to 

measure the distances between cells in a different manner according to 

their spatial position. In addition, the direction can be taken into account, 

creating variable offsets to horizontal or vertical elements.

Figure 14: Continuous distance field based on chamfer distance trans-
form for offset operations.

Figure 15: Robust offset operations on complex meshes.

Figure 13: Voxel-based 3D Voronoi diagrams of two different sets of 
triangles.



 408 AAG2018  409

3.4 Stiffening-structures 

In order to stabilize 3D prints without using too much material, stiffening 

structures such as ribs can be introduced. On irregular mesh surfaces, 

this requires complex operations in order to maintain a manifold mesh. 

As these stiffening structures are often ideally oriented along the normal 

of the surfaces, it is not trivial how this can be done within a voxel-space. 

In this section we outline an approach which consists of several steps 

based on the flood fill and Voronoi tessellation processes described 

above.
 

Figure 16: a: Classification of regions, b: Voxel-based Voronoi, c: 
Voronoi borders, d: Border offset, e: Border crop (simplified distance 
measurement).

Regions of the surface are classified according to the desired rib layout 

(Fig. 16a). From these regions, a 3D Voronoi tessellation is created 

(Fig. 16b). The borders of these tessellations are perpendicular to the 

surfaces of the regions. In voxel-space, border voxels can be identified 

by the number of neighbors belonging to a different Voronoi region 

(Fig. 16c). Once these borders are selected, an offset operation inside 

the voxel-space defines the desired thickness of the ribs (Fig. 16d). 

The desired depth of the ribs can be cropped after an additional offset 

operation based on the original surface.

Figure 17: left, exemplary input mesh; middle, Voronoi borders of each 
triangle; right, border crop.
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These computational steps can be calculated in linear time, and always 

result in a manifold geometry. The downside of this approach is that the 

approximated distance calculation leads to some imprecisions. In the 

case of the stiffening ribs for the interior of objects, this imprecision is 

acceptable for most applications. 

Additional operations that are meaningful in the context of archi-

tectural applications can be easily performed in voxel-space. Calculation 

of the overall mass, the volume, and the gravity center are based on 

simple arithmetic operations. Within a continuous distance field, the 

calculation of a skeleton, or the detection of thin parts are also fast to 

calculate.

Figure 18: top left, voxel-based surface distance from ground; top right, 
voxel-based surface distance from central axis; bottom left, segmen-
tation of a volumetric model based on surface distances; bottom right, 
stiffening rib structure based on 3D Voronoi calculated on volumetric 
distance field.
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Figure 19: Voxel-based offset and stiffening ribs of 3D printed shells.

3.5 3D printed bricks 

The described volumetric operations have already successfully been 

used for the generation of 3D printable geometry for multiple large-scale 

3D printed structures (Hansmeyer and Dillenburger 2014). The project 

Digital Grotesque showcases the most radical application, as here 

the initial mesh data carried extreme details and complex topological 

structures. 

In Digital Grotesque, the initial mesh geometry consists of 260 

million triangles. In order to create 3D printable data, a volumetric model 

in the resolution of 25 billion voxels was generated. 

Using this volumetric model, all offset operations and Boolean ope-

rations for the inner details were calculated according to the methods 

described above. From the volumetric model, printable layer data could 
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be extracted in the slice-format CLI, directly feeding the binderjet prin-

ting system. 

In the case of the Digital Grotesque, both the strength and the 

limitations of the presented approach can be demonstrated. No existing 

commercial software was able to perform the necessary operation of 

turning the mesh into a manifold geometry. Through the help of volume-

tric modelling, a large architectural structure could be discretized into 3D 

printable elements. Those printed stones could be optimized, reducing 

the material thickness to minimum and strategically stiffening the shell 

with additional ribs. Alignment cones and lifting details positioned accor-

ding to the center of gravity could be integrated (see Fig. 20). 
 

Figure 20: 3D Printed Brick. An initial mesh is detailed in voxel-space.
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Figure 21: Assembly sequence of multiple 3D printed bricks, all detailed 
in voxel-space
 

Figure 22: Detail of a 3D printed brick, showcasing interior structure of 
volumetric offset operation
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3.6 Discussion

Although the resolution of the voxel model was extremely high, the 

detail of the initial mesh form could not be translated to the printed parts 

to 100 %. Specifically, filigree features with sharp edges in the original 

became thickened and smoothened within a fraction of millimeters. On a 

positive note, this slight thickening protected the most delicate features 

from cracking. 

On the interior of the printed bricks, the pattern of the approximated 

distance calculation is still readable, leaving traces of the volumetric 

approach (see Fig. 22). On the exterior, some of the original triangula-

ted facets remained visible throughout the entire process. Last but not 

least, certain regions, depending on the orientation within the print-box 

displayed the traces of the layer height 0.3 mm of the printers.

4. Conclusion

We are facing a new situation in architecture: with large 3D printers, we 

might soon materialize almost anything. Currently, our architectural de-

sign tools do not allow us to address this potential. Volumetric modelling 

gives us a new perspective. As architects, we define space by designing 

the boundaries between the inside and the outside. But this design 

should not stay on the surface of the building elements only. The interior 

structure of building elements is becoming more and more relevant. 

Instead of a binary separation of space into either solid or void, various 

degrees of porosity can be tailored to specific needs. If we want to op-

timize building elements and reduce the amount of consumed material, 

we need tools to differentiate both their external and internal structures. 

This paper describes fundamental geometric strategies to do so. A 

plethora of further instruments can be realized in volumetric representa-

tion. It has been shown how volumetric modelling can help to materialize 

designs. We believe that in the future it will also help to generate new 

ideas and spawn unforeseeable designs.
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