5,155 research outputs found

    Hybrid Algorithms Based on Integer Programming for the Search of Prioritized Test Data in Software Product Lines

    Get PDF
    In Software Product Lines (SPLs) it is not possible, in general, to test all products of the family. The number of products denoted by a SPL is very high due to the combinatorial explosion of features. For this reason, some coverage criteria have been proposed which try to test at least all feature interactions without the necessity to test all products, e.g., all pairs of features (pairwise coverage). In addition, it is desirable to first test products composed by a set of priority features. This problem is known as the Prioritized Pairwise Test Data Generation Problem. In this work we propose two hybrid algorithms using Integer Programming (IP) to generate a prioritized test suite. The first one is based on an integer linear formulation and the second one is based on a integer quadratic (nonlinear) formulation. We compare these techniques with two state-of-the-art algorithms, the Parallel Prioritized Genetic Solver (PPGS) and a greedy algorithm called prioritized-ICPL. Our study reveals that our hybrid nonlinear approach is clearly the best in both, solution quality and computation time. Moreover, the nonlinear variant (the fastest one) is 27 and 42 times faster than PPGS in the two groups of instances analyzed in this work.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Partially funded by the Spanish Ministry of Economy and Competitiveness and FEDER under contract TIN2014-57341-R, the University of Málaga, Andalucía Tech and the Spanish Network TIN2015-71841-REDT (SEBASENet)

    Who Learns Better Bayesian Network Structures: Accuracy and Speed of Structure Learning Algorithms

    Get PDF
    Three classes of algorithms to learn the structure of Bayesian networks from data are common in the literature: constraint-based algorithms, which use conditional independence tests to learn the dependence structure of the data; score-based algorithms, which use goodness-of-fit scores as objective functions to maximise; and hybrid algorithms that combine both approaches. Constraint-based and score-based algorithms have been shown to learn the same structures when conditional independence and goodness of fit are both assessed using entropy and the topological ordering of the network is known (Cowell, 2001). In this paper, we investigate how these three classes of algorithms perform outside the assumptions above in terms of speed and accuracy of network reconstruction for both discrete and Gaussian Bayesian networks. We approach this question by recognising that structure learning is defined by the combination of a statistical criterion and an algorithm that determines how the criterion is applied to the data. Removing the confounding effect of different choices for the statistical criterion, we find using both simulated and real-world complex data that constraint-based algorithms are often less accurate than score-based algorithms, but are seldom faster (even at large sample sizes); and that hybrid algorithms are neither faster nor more accurate than constraint-based algorithms. This suggests that commonly held beliefs on structure learning in the literature are strongly influenced by the choice of particular statistical criteria rather than just by the properties of the algorithms themselves.Comment: 27 pages, 8 figure

    Genetic learning particle swarm optimization

    Get PDF
    Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for “learning.” This leads to a generalized “learning PSO” paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO

    ND-Tree-based update: a Fast Algorithm for the Dynamic Non-Dominance Problem

    Full text link
    In this paper we propose a new method called ND-Tree-based update (or shortly ND-Tree) for the dynamic non-dominance problem, i.e. the problem of online update of a Pareto archive composed of mutually non-dominated points. It uses a new ND-Tree data structure in which each node represents a subset of points contained in a hyperrectangle defined by its local approximate ideal and nadir points. By building subsets containing points located close in the objective space and using basic properties of the local ideal and nadir points we can efficiently avoid searching many branches in the tree. ND-Tree may be used in multiobjective evolutionary algorithms and other multiobjective metaheuristics to update an archive of potentially non-dominated points. We prove that the proposed algorithm has sub-linear time complexity under mild assumptions. We experimentally compare ND-Tree to the simple list, Quad-tree, and M-Front methods using artificial and realistic benchmarks with up to 10 objectives and show that with this new method substantial reduction of the number of point comparisons and computational time can be obtained. Furthermore, we apply the method to the non-dominated sorting problem showing that it is highly competitive to some recently proposed algorithms dedicated to this problem.Comment: 15 pages, 21 figures, 3 table
    corecore