412 research outputs found

    Resource Allocation in Uplink Long Term Evolution

    Get PDF
    One of the most crucial goals of future cellular systems is to minimize transmission power while increasing system performance. This master thesis work presents two channel-queue-aware scheduling schemes to allocate channels among active users in uplink LTE. Transmission power, packet delays and data rates are three of the most important criteria critically affecting the resource allocation designs. Therefore, each of these two scheduling algorithms proposes a practical method that assigns resources in such a way so as to optimally maximize data rate and minimize transmission power and packet delays while ensuring the QoS requirements. After converting the resource allocation problem into an optimization problem, the objective function and associated constraints are derived. Due to the contiguity constraint, which is imposed by SC-FDMA in uplink LTE, binary integer programming is employed to solve the optimization problem. Also the heuristic algorithms that approximate optimal schemes are presented to decrease the algorithm complexity

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Admission control and resource allocation for LTE uplink systems

    Get PDF
    Long Term Evolution (LTE) radio technologies aim not only to increase the capacity of mobile telephone networks, but also to provide high throughput, low latency, an improved end-to-end Quality of Service (QoS) and a simple architecture. The Third Generation Partnership Project (3GPP) has defined Single Carrier FDMA (SC-FDMA) as the access technique for the uplink and Orthogonal Frequency Division Multiple Access (OFDMA) for the downlink. It is well known that scheduling and admission control play an important role for QoS provisioning, and that they are strongly related. Knowing that we can take full advantage of this property we can design an admission control mechanism that uses the design criterion of the scheduling scheme. In this thesis, we developed two new algorithms for handling single-class resource allocation and two algorithms for handling multi-class resource allocation, as well as a new admission control scheme for handling multi-class Grade of Service (GoS) and QoS in uplink LTE systems. We also present a combined solution that uses the resource allocation and the admission control properties to satisfy the GoS and QoS requirements. System performance is evaluated using simulations. Numerical results show that the proposed scheduling algorithms can handle multi-class QoS in LTE uplink systems with a little increase in complexity, and can be used in conjunction with admission control to meet the LTE requirements. In addition, the proposed admission control algorithm gain for the most sensitive traffic can be increased without sacrificing the overall system capacity. At the same time, guaranteeing GoS and maintaining the basic QoS requirements for all the admitted requests

    Efficient Scheduling Algorithms for Wireless Resource Allocation and Virtualization in Wireless Networks

    Get PDF
    The continuing growth in demand for better mobile broadband experiences has motivated rapid development of radio-access technologies to support high data rates and improve quality of service (QoS) and quality of experience (QoE) for mobile users. However, the modern radio-access technologies pose new challenges to mobile network operators (MNO) and wireless device designers such as reducing the total cost of ownership while supporting high data throughput per user, and extending battery life-per-charge of the mobile devices. In this thesis, a variety of optimization techniques aimed at providing innovative solutions for such challenges are explored. The thesis is divided into two parts. In the first part, the challenge of extending battery life-per-charge is addressed. Optimal and suboptimal power-efficient schedulers that minimize the total transmit power and meet the QoS requirements of the users are presented. The second outlines the benefits and challenges of deploying wireless resource virtualization (WRV) concept as a promising solution for satisfying the growing demand for mobile data and reducing capital and operational costs. First, a WRV framework is proposed for single cell zone that is able to centralize and share the spectrum resources between multiple MNOs. Consequently, several WRV frameworks are proposed, which virtualize the spectrum resource of the entire network for cloud radio access network (C-RAN)- one of the front runners for the next generation network architecture. The main contributions of this thesis are in designing optimal and suboptimal solutions for the aforementioned challenges. In most cases, the optimal solutions suffer from high complexity, and therefore low-complexity suboptimal solutions are provided for practical systems. The optimal solutions are used as benchmarks for evaluating the suboptimal solutions. The results prove that the proposed solutions effectively contribute in addressing the challenges caused by the demand for high data rates and power transmission in mobile networks

    Long Term Evolution-Advanced and Future Machine-to-Machine Communication

    Get PDF
    Long Term Evolution (LTE) has adopted Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA) as the downlink and uplink transmission schemes respectively. Quality of Service (QoS) provisioning is one of the primary objectives of wireless network operators. In LTE-Advanced (LTE-A), several additional new features such as Carrier Aggregation (CA) and Relay Nodes (RNs) have been introduced by the 3rd Generation Partnership Project (3GPP). These features have been designed to deal with the ever increasing demands for higher data rates and spectral efficiency. The RN is a low power and low cost device designed for extending the coverage and enhancing spectral efficiency, especially at the cell edge. Wireless networks are facing a new challenge emerging on the horizon, the expected surge of the Machine-to-Machine (M2M) traffic in cellular and mobile networks. The costs and sizes of the M2M devices with integrated sensors, network interfaces and enhanced power capabilities have decreased significantly in recent years. Therefore, it is anticipated that M2M devices might outnumber conventional mobile devices in the near future. 3GPP standards like LTE-A have primarily been developed for broadband data services with mobility support. However, M2M applications are mostly based on narrowband traffic. These standards may not achieve overall spectrum and cost efficiency if they are utilized for serving the M2M applications. The main goal of this thesis is to take the advantage of the low cost, low power and small size of RNs for integrating M2M traffic into LTE-A networks. A new RN design is presented for aggregating and multiplexing M2M traffic at the RN before transmission over the air interface (Un interface) to the base station called eNodeB. The data packets of the M2M devices are sent to the RN over the Uu interface. Packets from different devices are aggregated at the Packet Data Convergence Protocol (PDCP) layer of the Donor eNodeB (DeNB) into a single large IP packet instead of several small IP packets. Therefore, the amount of overhead data can be significantly reduced. The proposed concept has been developed in the LTE-A network simulator to illustrate the benefits and advantages of the M2M traffic aggregation and multiplexing at the RN. The potential gains of RNs such as coverage enhancement, multiplexing gain, end-to-end delay performance etc. are illustrated with help of simulation results. The results indicate that the proposed concept improves the performance of the LTE-A network with M2M traffic. The adverse impact of M2M traffic on regular LTE-A traffic such as voice and file transfer is minimized. Furthermore, the cell edge throughput and QoS performance are enhanced. Moreover, the results are validated with the help of an analytical model

    Energy Efficient Reduced Complexity Multi-Service, Multi-Channel Scheduling Techniques

    Get PDF
    The need for energy efficient communications is essential in current and next-generation wireless communications systems. A large component of energy expenditure in mobile devices is in the mobile radio interface. Proper scheduling and resource allocation techniques that exploit instantaneous and long-term average knowledge of the channel, queue state and quality of service parameters can be used to improve the energy efficiency of communication. This thesis focuses on exploiting queue and channel state information as well as quality of service parameters in order to design energy efficient scheduling techniques. The proposed designs are for multi-stream, multi-channel systems and in general have high computational complexity. The large contributions of this thesis are in both the design of optimal/near-optimal scheduling/resource allocation schemes for these systems as well as proposing complexity reduction methods in their design. Methods are proposed for both a MIMO downlink system as well as an LTE uplink system. The effect of power efficiency on quality of service parameters is well studied as well as complexity/efficiency comparisons between optimal/near optimal allocation
    • …
    corecore