244 research outputs found

    - Frequency Sharing of Wi-Fi/LTE-U -

    Get PDF
    학위논문 (석사) -- 서울대학교 대학원 : 공과대학 협동과정 기술경영·경제·정책전공, 2020. 8. Jorn Altmann .5세대(5G) 이동통신 확산을 위하여 정부는 '비면허 5G' 주파수 대역인 6GHz 대역폭에 최대 1.2㎓ 폭을 공급할 예정이다. 4차 산업에 대응하여 기업이 스마트 공장에 적합한 맞춤형 5G망을 구축하기 위한 목적이다. 과학기술정보통신부(MSIT)는 6㎓ 대역 대상으로 비면허 주파수 대역의 5G 연구반을 가동, 주파수 분배 방안 수립과 기술 기준 제정에 착수한 것으로 확인됐다. 비면허 5G(NR-U)는 정부가 개방한 비면허 주파수 대역에 5G 코어망과 기지국 등 표준 기술을 적용해 초저지연초고속 성능을 구현하는 기술로, 6월 국제민간표준화기구(3GPP) 상용화를 앞두고 있다. 그러나 5/6GHz 대역의 주파수는 와이파이와 LTE-LAA가 공존하게 될 영역으로 이해관계자들의 주장이 엇갈리고 있다. LBT (Listen-Before-Talk)는 비면허 주파수를 공유하는 방법으로 기술적/행정적 방안으로, 채널을 분석하여 데이터를 전송하기 가장 적절한 주파수대역을 선출하는 방법중에 하나이다. 이 대역을 선출하기 위한 기술 방법은 CCA (Clear Channel Assessment)라고 한다. 이 기술은 LTE 통신사업자들이 개발한 기술로 구체화된 기술표준을 요구하고 있다. 하지만, 이 기술을 와이파이 사업자 입장에서는 이 기술의 실제 실용가능 여부에 대해 의구심을 갖고 있다. 그 이유는 해당 기술이 지나치게 LTE 통신사업자들에게 유리하게 개발된 기술이라는 논쟁이 있기 때문이다. 이에 통신기술정책 결정자는 양측이 공존할 수 있는 법 제정방안을 강구해야 하며, 이 논문에서는 기존 와이파이 사용자들을 보호하며 통신 사업자들 역시 주파수를 공유할 수 있는 제도 정책의 방법을 정책자 입장에서 연구해보자 한다. 비면허 주파수를 개방하게 되었을 때 채널 사용자 비율과 라이선스 배부 비율 사이의 효율성에 대해 연구하였다. 그리고, 사용 가능한 채널을 비교하는 방법을 기존연구를 통해 비교하고 새로운 모델을 개발 했다. 또 기술 표준으로 이미 제정 된 노이즈 한계치가 실제 공유가 됐을 때 어떤식으로 작용되는 지를 알아보기 위해 시뮬레이션 분석을 통해 예측해 보았다.A spectrum-sharing policy is yet to be established for unlicensed bands. There are several controversies related to providing 5-GHz (5G) band service with the coexistence of Wi-Fi and LTE–LAA (License Assisted Access). LTE–LAA is a technical and political scheme for sharing spectrum bands. Using this technique, the channel can be evaluated, and a proper channel can be selected before data transmission. This mechanism is called listen before talk (LBT), and the channel selection procedure is called clear channel assessment (CCA). LTE service providers suggest standardizing this technology using an unlicensed band. However, existing Wi-Fi users are skeptical about the sharing process. In this paper, we describe proper spectrum-sharing mechanisms based on policy-based channel selection algorithms. Based on the results, proper regulation of the 5G LTE-U is required to avoid conflicts among service providers. This work uses a policy-based mechanism to understand the role of the government in managing these bands. The main idea is that stricter sharing-policy regulations and higher thresholds must be implemented to protect the rights of existing users.1. Introduction 1 1.1 Research Background 1 1.2 Problem Description 2 1.2.1 Controversies on Wi-Fi and LTE-U Coexistence 2 1.3 Research Question 4 1.3.1. Fairness and Efficiency of Sharing Policy 4 1.3.2. Evaluation and Simulation of Sharing Technology 5 1.4 Contribution 5 2. Literature Review 6 2.1 Spectrum-Sharing Policy 6 2.1.2 Case of South Korea 8 2.2 Spectrum-Sharing Technologies 10 2.2.1 Licensed Assisted Access (LAA) 11 2.2.2 Listen Before Talk (LBT) 13 2.2.2.1 Qualcomm Evaluation 13 2.2.2.2 3GPP Evaluation 16 2.3 Comparison with Previous Work 17 3. Modeling 20 3.1 General Assumption 22 3.2 Flow Chart 23 3.2.1 License Type Evaluation (Guard Interval Evaluation) 23 3.2.2 Energy Detection Evaluation 26 4. Simulation 29 4.1 Parameter setting 29 4.2 Simulation Result 31 5. Conclusion 36 5.1 Overall Implication 36 5.2 Limitation 37 5.3 Further study 37 Appendix 39 Bibliography 47 Abstract (Korean) 50Maste

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Cellular and Wi-Fi technologies evolution: from complementarity to competition

    Get PDF
    This PhD thesis has the characteristic to span over a long time because while working on it, I was working as a research engineer at CTTC with highly demanding development duties. This has delayed the deposit more than I would have liked. On the other hand, this has given me the privilege of witnessing and studying how wireless technologies have been evolving over a decade from 4G to 5G and beyond. When I started my PhD thesis, IEEE and 3GPP were defining the two main wireless technologies at the time, Wi-Fi and LTE, for covering two substantially complementary market targets. Wi-Fi was designed to operate mostly indoor, in unlicensed spectrum, and was aimed to be a simple and cheap technology. Its primary technology for coexistence was based on the assumption that the spectrum on which it was operating was for free, and so it was designed with interference avoidance through the famous CSMA/CA protocol. On the other hand, 3GPP was designing technologies for licensed spectrum, a costly kind of spectrum. As a result, LTE was designed to take the best advantage of it while providing the best QoE in mainly outdoor scenarios. The PhD thesis starts in this context and evolves with these two technologies. In the first chapters, the thesis studies radio resource management solutions for standalone operation of Wi-Fi in unlicensed and LTE in licensed spectrum. We anticipated the now fundamental machine learning trend by working on machine learning-based radio resource management solutions to improve LTE and Wi-Fi operation in their respective spectrum. We pay particular attention to small cell deployments aimed at improving the spectrum efficiency in licensed spectrum, reproducing small range scenarios typical of Wi-Fi settings. IEEE and 3GPP followed evolving the technologies over the years: Wi-Fi has grown into a much more complex and sophisticated technology, incorporating the key features of cellular technologies, like HARQ, OFDMA, MU-MIMO, MAC scheduling and spatial reuse. On the other hand, since Release 13, cellular networks have also been designed for unlicensed spectrum. As a result, the two last chapters of this thesis focus on coexistence scenarios, in which LTE needs to be designed to coexist with Wi-Fi fairly, and NR, the radio access for 5G, with Wi-Fi in 5 GHz and WiGig in 60 GHz. Unlike LTE, which was adapted to operate in unlicensed spectrum, NR-U is natively designed with this feature, including its capability to operate in unlicensed in a complete standalone fashion, a fundamental new milestone for cellular. In this context, our focus of analysis changes. We consider that these two technological families are no longer targeting complementarity but are now competing, and we claim that this will be the trend for the years to come. To enable the research in these multi-RAT scenarios, another fundamental result of this PhD thesis, besides the scientific contributions, is the release of high fidelity models for LTE and NR and their coexistence with Wi-Fi and WiGig to the ns-3 open-source community. ns-3 is a popular open-source network simulator, with the characteristic to be multi-RAT and so naturally allows the evaluation of coexistence scenarios between different technologies. These models, for which I led the development, are by academic citations, the most used open-source simulation models for LTE and NR and havereceived fundings from industry (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) and federal agencies (NIST, LLNL) over the years.Aquesta tesi doctoral té la característica d’allargar-se durant un llarg període de temps ja que mentre treballava en ella, treballava com a enginyera investigadora a CTTC amb tasques de desenvolupament molt exigents. Això ha endarrerit el dipositar-la més del que m’hagués agradat. D’altra banda, això m’ha donat el privilegi de ser testimoni i estudiar com han evolucionat les tecnologies sense fils durant més d’una dècada des del 4G fins al 5G i més enllà. Quan vaig començar la tesi doctoral, IEEE i 3GPP estaven definint les dues tecnologies sense fils principals en aquell moment, Wi-Fi i LTE, que cobreixen dos objectius de mercat substancialment complementaris. Wi-Fi va ser dissenyat per funcionar principalment en interiors, en espectre sense llicència, i pretenia ser una tecnologia senzilla i barata. La seva tecnologia primària per a la convivència es basava en el supòsit que l’espectre en el que estava operant era de franc, i, per tant, es va dissenyar simplement evitant interferències a través del famós protocol CSMA/CA. D’altra banda, 3GPP estava dissenyant tecnologies per a espectres amb llicència, un tipus d’espectre costós. Com a resultat, LTE està dissenyat per treure’n el màxim profit alhora que proporciona el millor QoE en escenaris principalment a l’aire lliure. La tesi doctoral comença amb aquest context i evoluciona amb aquestes dues tecnologies. En els primers capítols, estudiem solucions de gestió de recursos de radio per a operacions en espectre de Wi-Fi sense llicència i LTE amb llicència. Hem anticipat l’actual tendència fonamental d’aprenentatge automàtic treballant solucions de gestió de recursos de radio basades en l’aprenentatge automàtic per millorar l’LTE i Wi-Fi en el seu espectre respectiu. Prestem especial atenció als desplegaments de cèl·lules petites destinades a millorar la eficiència d’espectre llicenciat, reproduint escenaris de petit abast típics de la configuració Wi-Fi. IEEE i 3GPP van seguir evolucionant les tecnologies al llarg dels anys: El Wi-Fi s’ha convertit en una tecnologia molt més complexa i sofisticada, incorporant les característiques clau de les tecnologies cel·lulars, com ara HARQ i la reutilització espacial. D’altra banda, des de la versió 13, també s’han dissenyat xarxes cel·lulars per a espectre sense llicència. Com a resultat, els dos darrers capítols d’aquesta tesi es centren en aquests escenaris de convivència, on s’ha de dissenyar LTE per conviure amb la Wi-Fi de manera justa, i NR, l’accés a la radio per a 5G amb Wi-Fi a 5 GHz i WiGig a 60 GHz. A diferència de LTE, que es va adaptar per funcionar en espectre sense llicència, NR-U està dissenyat de forma nativa amb aquesta característica, inclosa la seva capacitat per operar sense llicència de forma autònoma completa, una nova fita fonamental per al mòbil. En aquest context, el nostre focus d’anàlisi canvia. Considerem que aquestes dues famílies de tecnologia ja no estan orientades cap a la complementarietat, sinó que ara competeixen, i afirmem que aquesta serà el tendència per als propers anys. Per permetre la investigació en aquests escenaris multi-RAT, un altre resultat fonamental d’aquesta tesi doctoral, a més de les aportacions científiques, és l’alliberament de models d’alta fidelitat per a LTE i NR i la seva coexistència amb Wi-Fi a la comunitat de codi obert ns-3. ns-3 és un popular simulador de xarxa de codi obert, amb la característica de ser multi-RAT i, per tant, permet l’avaluació de manera natural d’escenaris de convivència entre diferents tecnologies. Aquests models, pels quals he liderat el desenvolupament, són per cites acadèmiques, els models de simulació de codi obert més utilitzats per a LTE i NR i que han rebut finançament de la indústria (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) i agències federals (NIST, LLNL) al llarg dels anys.Esta tesis doctoral tiene la característica de extenderse durante mucho tiempo porque mientras trabajaba en ella, trabajaba como ingeniera de investigación en CTTC con tareas de desarrollo muy exigentes. Esto ha retrasado el depósito más de lo que me hubiera gustado. Por otro lado, gracias a ello, he tenido el privilegio de presenciar y estudiar como las tecnologías inalámbricas han evolucionado durante una década, de 4G a 5G y más allá. Cuando comencé mi tesis doctoral, IEEE y 3GPP estaban definiendo las dos principales tecnologías inalámbricas en ese momento, Wi-Fi y LTE, cumpliendo dos objetivos de mercado sustancialmente complementarios. Wi-Fi fue diseñado para funcionar principalmente en interiores, en un espectro sin licencia, y estaba destinado a ser una tecnología simple y barata. Su tecnología primaria para la convivencia se basaba en el supuesto en que el espectro en el que estaba operando era gratis, y así fue diseñado simplemente evitando interferencias a través del famoso protocolo CSMA/CA. Por otro lado, 3GPP estaba diseñando tecnologías para espectro con licencia, un tipo de espectro costoso. Como resultado, LTE está diseñado para aprovechar el espectro al máximo proporcionando al mismo tiempo el mejor QoE en escenarios principalmente al aire libre. La tesis doctoral parte de este contexto y evoluciona con estas dos tecnologías. En los primeros capítulos, estudiamos las soluciones de gestión de recursos de radio para operación en espectro Wi-Fi sin licencia y LTE con licencia. Anticipamos la tendencia ahora fundamental de aprendizaje automático trabajando en soluciones de gestión de recursos de radio para mejorar LTE y funcionamiento deWi-Fi en su respectivo espectro. Prestamos especial atención a las implementaciones de células pequeñas destinadas a mejorar la eficiencia de espectro licenciado, reproduciendo los típicos escenarios de rango pequeño de la configuración Wi-Fi. IEEE y 3GPP siguieron evolucionando las tecnologías a lo largo de los años: Wi-Fi se ha convertido en una tecnología mucho más compleja y sofisticada, incorporando las características clave de las tecnologías celulares, como HARQ, OFDMA, MU-MIMO, MAC scheduling y la reutilización espacial. Por otro lado, desde la Release 13, también se han diseñado redes celulares para espectro sin licencia. Como resultado, los dos últimos capítulos de esta tesis se centran en estos escenarios de convivencia, donde LTE debe diseñarse para coexistir con Wi-Fi de manera justa, y NR, el acceso por radio para 5G con Wi-Fi en 5 GHz y WiGig en 60 GHz. A diferencia de LTE, que se adaptó para operar en espectro sin licencia, NR-U está diseñado de forma nativa con esta función, incluyendo su capacidad para operar sin licencia de forma completamente independiente, un nuevo hito fundamental para los celulares. En este contexto, cambia nuestro enfoque de análisis. Consideramos que estas dos familias tecnológicas ya no tienen como objetivo la complementariedad, sino que ahora están compitiendo, y afirmamos que esta será la tendencia para los próximos años. Para permitir la investigación en estos escenarios de múltiples RAT, otro resultado fundamental de esta tesis doctoral, además de los aportes científicos, es el lanzamiento de modelos de alta fidelidad para LTE y NR y su coexistencia con Wi-Fi y WiGig a la comunidad de código abierto de ns-3. ns-3 es un simulador popular de red de código abierto, con la característica de ser multi-RAT y así, naturalmente, permite la evaluación de escenarios de convivencia entre diferentes tecnologías. Estos modelos, para los cuales lideré el desarrollo, son por citas académicas, los modelos de simulación de código abierto más utilizados para LTE y NR y han recibido fondos de la industria (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) y agencias federales (NIST, LLNL) a lo largo de los años.Postprint (published version

    Resource and Interference Management in UAV-Cellular Network

    Get PDF
    The future Sixth-Generation (6G) network is anticipated to extend connectivity for millions of Unmanned Aerial Vehicles (UAVs) worldwide and support various innovative use cases, such as cargo transport, inspection, and intelligent agriculture. The terrestrial cellular networks provide real-time information exchange between UAVs and Ground Control Stations (GCS), which facilitates the evolution of UAV communication systems while bringing promising economic benefits to cellular network operators. However, the tremendous growth in the UAV data traffic, with diverse and stringent service requirements, would add another pressure on the already congested terrestrial cellular network that is facing a rigorous challenge to increase network capacity with the limited spectrum resources. Moreover, since Macro Base Station (MBS) antennas are typically downtilt, UAVs, which are served by the MBS antenna’s side lobes, suffer from sharp signal fluctuations causing throughput reduction and coverage drop. Besides, due to the Line-of-Sight (LoS) between UAVs and MBSs, UAVs experience higher uplink/downlink interference compared to ground Cellular Users (CUs). In this thesis, we propose two novel aerial network architectures in which we design efficient interference and resource management strategies to support the UAV Quality-of-Service (QoS) guarantee while considering different types of interference. Firstly, we propose a novel standalone aerial multi-cell network where multiple UAV Base Stations (UAV-BSs) provide cellular services to UAV Users by reusing the licensed and unlicensed spectrum. Our objective is to jointly optimize the subchannels and power allocations of UAV-Users in the licensed and unlicensed spectrum to maximize the network uplink sum rate, considering inter-cell interference, co-existence with terrestrial cellular and WiFi systems, and the QoS of UAV-Users. We prove mathematically that the formulated optimization problem is an NP-hard problem. Therefore, the original problem is decomposed into three subproblems to solve it efficiently. We first use convex optimization and the Hungarian algorithm to obtain the global optimal of power and subchannel allocations in the licensed spectrum, respectively. Then, we design a matching game with externalities and coalition game algorithms to obtain the Nash stable of the subchannel allocation in the unlicensed band. Local optimal power assignment in the unlicensed spectrum is obtained using the successive convex approximation method. Lastly, we develop an iterative algorithm to solve the three subproblems sequentially until convergence is reached. Simulation results demonstrate that the proposed algorithm achieves a significantly higher uplink sum rate compared with other resource allocation schemes. Moreover, the proposed algorithm improves the network throughput and capacity by nearly two times comparing to the Long Term Evolution-Advanced (LTE-A). Secondly, we propose a novel integrated aerial-terrestrial multi-operator network. In the network, each operator deploys a number of UAV-BSs besides the terrestrial MBS, where each BS reuses the operator’s licensed spectrum to provide downlink connectivity for UAV-Users. Moreover, the operators allow the UAV-Users, whose demand cannot be satisfied by the licensed band, to compete with others to obtain bandwidth from the unlicensed spectrum. Given the QoS requirements of UAV-Users, we aim to maximize the total sum rate by jointly optimizing user association, BSs transmit power, and dynamic spectrum allocation considering inter-cell interference in the licensed band and inter-operator interference in the unlicensed spectrum. In particular, we divide the resulting non-convex Mixed-Integer Non-Linear Programming (MINLP) optimization problem into two sequential subproblems: user association and power control in the licensed spectrum; and dynamic spectrum allocation and user association in the unlicensed spectrum. Furthermore, the former subproblem is decomposed into multiple subproblems for distributed and parallel problem-solving. Since the resulting former subproblem is still a non-convex MINLP problem, we propose a distributed iterative algorithm consisting of a matching game, coalition game, and successive convex approximation technique to solve it. Afterwards, in the latter subproblem, we first use a matching game to associate UAV-Users with the UAV-BSs for each operator in the unlicensed spectrum. Then, we propose a three-layers auction algorithm to allocate the unlicensed spectrum among operators dynamically. Extensive simulation results demonstrate that the proposed algorithm in the licensed spectrum significantly improves network throughput per operator than the conventional terrestrial network alone. Moreover, the achieved system throughput of the proposed algorithms in both licensed and unlicensed spectrum is 86.8% higher compared with that of using the licensed spectrum only. In summary, we have proposed integrated aerial-terrestrial network architectures that leverage the aerial network to complete the terrestrial network to serve cellular-connected UAVs by reusing licensed and unlicensed spectrum considering multi-cell and multi-operator scenarios. Under the proposed network architectures, we have investigated the subchannel allocation, UAV-Users’ transmit power, user association, BSs’ transmit power, and dynamic spectrum management to maximize the network throughput considering the QoS of UAV-User. The proposed architectures and algorithms should provide valuable guidelines for future research in designing resource and interference management schemes, improving network capacity, and enhancing spectrum utilization for complex interference environments in integrated UAV-cellular networks

    Coexistence of Wi-Fi and 5G NR-U in the Unlicensed Band

    Get PDF
    The communications industry continues to evolve to meet the ever-growing demands of fast connectivity and higher energy-efficiency and has emerged the concept of Internet of Things (IoT) systems. IoT devices can be run on Wi-Fi or cellular network, helping businesses to receive higher return on investments. As billions of devices on cellular networks operate on the limited licensed spectrum, it is becoming scarcer. Mobile network operators are investigating to access the immense unlicensed spectrum, on which Wi-Fi is prominently operated. Managing this coexistence between the cellular and Wi-Fi networks poses several challenges. One challenge is the spectrum sharing that affects the network capacity and the spectrum efficiency by properly allocating the available resources for each technology. A second challenge is to maintain the quality of service (QoS) while maximizing the aggregated throughput. A final challenge is to reduce the power consumption of cellular base stations by creating a sleep/wakeup policy, thereby lowering the capital and operating expenses for the mobile network operators. To this end, this thesis proposes various optimization modeling for the coexistence mechanisms in the unlicensed spectrum, as well as intelligent techniques to manage the increasing power consumption with increased usage. First, this thesis develops optimization modeling techniques to properly allocate resources for the coexistence of the Wi-Fi and cellular networks by improving the aggregate throughput, while maintaining the minimum required power consumption. Next, this thesis implements the coexistence mechanism by simulating real-time traffic information to maximize the aggregate throughput, while satisfying the QoS for each user. Finally, this thesis investigates the use of machine learning techniques to predict the traffic behaviour of base stations; this will determine the sleep/wakeup schedule, thereby minimizing the power consumption while maintaining the QoS for each cellular user

    Energy and throughput efficient strategies for heterogeneous future communication networks

    Get PDF
    As a result of the proliferation of wireless-enabled user equipment and data-hungry applications, mobile data traffic has exponentially increased in recent years.This in-crease has not only forced mobile networks to compete on the scarce wireless spectrum but also to intensify their power consumption to serve an ever-increasing number of user devices. The Heterogeneous Network (HetNet) concept, where mixed types of low-power base stations coexist with large macro base stations, has emerged as a potential solution to address power consumption and spectrum scarcity challenges. However, as a consequence of their inflexible, constrained, and hardware-based configurations, HetNets have major limitations in adapting to fluctuating traffic patterns. Moreover, for large mobile networks, the number of low-power base stations (BSs) may increase dramatically leading to sever power consumption. This can easily overwhelm the benefits of the HetNet concept. This thesis exploits the adaptive nature of Software-defined Radio (SDR) technology to design novel and optimal communication strategies. These strategies have been designed to leverage the spectrum-based cell zooming technique, the long-term evolution licensed assisted access (LTE-LAA) concept, and green energy, in order to introduce a novel communication framework that endeavors to minimize overall network on-grid power consumption and to maximize aggregated throughput, which brings significant benefits for both network operators and their customers. The proposed strategies take into consideration user data demands, BS loads, BS power consumption, and available spectrum to model the research questions as optimization problems. In addition, this thesis leverages the opportunistic nature of the cognitive radio (CR) technique and the adaptive nature of the SDR to introduce a CR-based communication strategy. This proposed CR-based strategy alleviates the power consumption of the CR technique and enhances its security measures according to the confidentiality level of the data being sent. Furthermore, the introduced strategy takes into account user-related factors, such as user battery levels and user data types, and network-related factors, such as the number of unutilized bands and vulnerability level, and then models the research question as a constrained optimization problem. Considering the time complexity of the optimum solutions for the above-mentioned strategies, heuristic solutions were proposed and examined against existing solutions. The obtained results show that the proposed strategies can save energy consumption up to 18%, increase user throughput up to 23%, and achieve better spectrum utilization. Therefore, the proposed strategies offer substantial benefits for both network operators and users
    corecore