26 research outputs found

    Robust Secure Transmission in MISO Channels Based on Worst-Case Optimization

    Full text link
    This paper studies robust transmission schemes for multiple-input single-output (MISO) wiretap channels. Both the cases of direct transmission and cooperative jamming with a helper are investigated with imperfect channel state information (CSI) for the eavesdropper links. Robust transmit covariance matrices are obtained based on worst-case secrecy rate maximization, under both individual and global power constraints. For the case of an individual power constraint, we show that the non-convex maximin optimization problem can be transformed into a quasiconvex problem that can be efficiently solved with existing methods. For a global power constraint, the joint optimization of the transmit covariance matrices and power allocation between the source and the helper is studied via geometric programming. We also study the robust wiretap transmission problem for the case with a quality-of-service constraint at the legitimate receiver. Numerical results show the advantage of the proposed robust design. In particular, for the global power constraint scenario, although cooperative jamming is not necessary for optimal transmission with perfect eavesdropper's CSI, we show that robust jamming support can increase the worst-case secrecy rate and lower the signal to interference-plus-noise ratio at Eve in the presence of channel mismatches between the transmitters and the eavesdropper.Comment: 28 pages, 5 figure

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    To Harvest and Jam: A Paradigm of Self-Sustaining Friendly Jammers for Secure AF Relaying

    Get PDF
    This paper studies the use of multi-antenna harvest-and-jam (HJ) helpers in a multi-antenna amplify-and-forward (AF) relay wiretap channel assuming that the direct link between the source and destination is broken. Our objective is to maximize the secrecy rate at the destination subject to the transmit power constraints of the AF relay and the HJ helpers. In the case of perfect channel state information (CSI), the joint optimization of the artificial noise (AN) covariance matrix for cooperative jamming and the AF beamforming matrix is studied using semi-definite relaxation (SDR) which is tight, while suboptimal solutions are also devised with lower complexity. For the imperfect CSI case, we provide the equivalent reformulation of the worst-case robust optimization to maximize the minimum achievable secrecy rate. Inspired by the optimal solution to the case of perfect CSI, a suboptimal robust scheme is proposed striking a good tradeoff between complexity and performance. Finally, numerical results for various settings are provided to evaluate the proposed schemes.Comment: 16 pages (double column), 8 figures, submitted for possible journal publicatio

    Transmit optimization techniques for physical layer security

    Get PDF
    PhD ThesisOver the last several decades, reliable communication has received considerable attention in the area of dynamic network con gurations and distributed processing techniques. Traditional secure communications mainly considered transmission cryptography, which has been developed in the network layer. However, the nature of wireless transmission introduces various challenges of key distribution and management in establishing secure communication links. Physical layer security has been recently recognized as a promising new design paradigm to provide security in wireless networks in addition to existing conventional cryptographic methods, where the physical layer dynamics of fading channels are exploited to establish secure wireless links. On the other hand, with the ever-increasing demand of wireless access users, multi-antenna transmission has been considered as one of e ective approaches to improve the capacity of wireless networks. Multi-antenna transmission applied in physical layer security has extracted more and more attentions by exploiting additional degrees of freedom and diversity gains. In this thesis, di erent multi-antenna transmit optimization techniques are developed for physical layer secure transmission. The secrecy rate optimization problems (i.e., power minimization and secrecy rate maximization) are formulated to guarantee the optimal power allocation. First, transmit optimization for multiple-input single-output (MISO) secrecy channels are developed to design secure transmit beamformer that minimize the transmit power to achieve a target secrecy rate. Besides, the associated robust scheme with the secrecy rate outage probability constraint are presented with statistical channel uncertainty, where the outage probability constraint requires that the achieved secrecy rate exceeds certain thresholds with a speci c probability. Second, multiantenna cooperative jammer (CJ) is presented to provide jamming services that introduces extra interference to assist a multiple-input multipleoutput (MIMO) secure transmission. Transmit optimization for this CJaided MIMO secrecy channel is designed to achieve an optimal power allocation. Moreover, secure transmission is achieved when the CJ introduces charges for its jamming service based on the amount of the interference caused to the eavesdropper, where the Stackelberg game is proposed to handle, and the Stackelberg equilibrium is analytically derived. Finally, transmit optimization for MISO secure simultaneous wireless information and power transfer (SWIPT) is investigated, where secure transmit beamformer is designed with/without the help of arti - cial noise (AN) to maximize the achieved secrecy rate such that satisfy the transmit power budget and the energy harvesting (EH) constraint. The performance of all proposed schemes are validated by MATLAB simulation results

    Transmitter Optimization Techniques for Physical Layer Security

    Get PDF
    Information security is one of the most critical issues in wireless networks as the signals transmitted through wireless medium are more vulnerable for interception. Although the existing conventional security techniques are proven to be safe, the broadcast nature of wireless communications introduces different challenges in terms of key exchange and distributions. As a result, information theoretic physical layer security has been proposed to complement the conventional security techniques for enhancing security in wireless transmissions. On the other hand, the rapid growth of data rates introduces different challenges on power limited mobile devices in terms of energy requirements. Recently, research work on wireless power transfer claimed that it has been considered as a potential technique to extend the battery lifetime of wireless networks. However, the algorithms developed based on the conventional optimization approaches often require iterative techniques, which poses challenges for real-time processing. To meet the demanding requirements of future ultra-low latency and reliable networks, neural network (NN) based approach can be employed to determine the resource allocations in wireless communications. This thesis developed different transmission strategies for secure transmission in wireless communications. Firstly, transmitter designs are focused in a multiple-input single-output simultaneous wireless information and power transfer system with unknown eavesdroppers. To improve the performance of physical layer security and the harvested energy, artificial noise is incorporated into the network to mask the secret information between the legitimate terminals. Then, different secrecy energy efficiency designs are considered for a MISO underlay cognitive radio network, in the presence of an energy harvesting receiver. In particular, these designs are developed with different channel state information assumptions at the transmitter. Finally, two different power allocation designs are investigated for a cognitive radio network to maximize the secrecy rate of the secondary receiver: conventional convex optimization framework and NN based algorithm
    corecore