121 research outputs found

    Interference Management of Inband Underlay Device-toDevice Communication in 5G Cellular Networks

    Get PDF
    The explosive growth of data traffic demands, emanating from smart mobile devices and bandwidth-consuming applications on the cellular network poses the need to drastically modify the cellular network architecture. A challenge faced by the network operators is the inability of the finite spectral resources to support the growing data traffic. The Next Generation Network (NGN) is expected to meet defined requirements such as massively connecting billions of devices with heterogeneous applications and services through enhanced mobile broadband networks, which provides higher data rates with improved network reliability and availability, lower end-to-end latency and increased energy efficiency. Device-to-Device (D2D) communication is one of the several emerging technologies that has been proposed to support NGN in meeting these aforementioned requirements. D2D communication leverages the proximity of users to provide direct communication with or without traversing the base station. Hence, the integration of D2D communication into cellular networks provides potential gains in terms of throughput, energy efficiency, network capacity and spectrum efficiency. D2D communication underlaying a cellular network provides efficient utilisation of the scarce spectral resources, however, there is an introduction of interference emanating from the reuse of cellular channels by D2D pairs. Hence, this dissertation focuses on the technical challenge with regards to interference management in underlay D2D communication. In order to tackle this challenge to be able to exploit the potentials of D2D communication, there is the need to answer some important research questions concerning the problem. Thus, the study aims to find out how cellular channels can be efficiently allocated to D2D pairs for reuse as an underlay to cellular network, and how mode selection and power control approaches influence the degree of interference caused by D2D pairs to cellular users. Also, the research study continues to determine how the quality of D2D communication can be maintained with factors such as bad channel quality or increased distance. In addressing these research questions, resource management techniques of mode selection, power control, relay selection and channel allocation are applied to minimise the interference caused by D2D pairs when reusing cellular channels to guarantee the Quality of Service (QoS) of cellular users, while optimally improving the number of permitted D2D pairs to reuse channels. The concept of Open loop power control scheme is examined in D2D communication underlaying cellular network. The performance of the fractional open loop power control components on SINR is studied. The simulation results portrayed that the conventional open loop power control method provides increased compensation for the path loss with higher D2D transmit power when compared with the fractional open loop power control method. Furthermore, the problem of channel allocation to minimise interference is modelled in two system model scenarios, consisting of cellular users coexisting with D2D pairs with or without relay assistance. The channel allocation problem is solved as an assignment problem by using a proposed heuristic channel allocation, random channel allocation, Kuhn-Munkres (KM) and Gale-Shapley (GS) algorithms. A comparative performance evaluation for the algorithms are carried out in the two system model scenarios, and the results indicated that D2D communication with relay assistance outperformed the conventional D2D communication without relay assistance. This concludes that the introduction of relay-assisted D2D communication can improve the quality of a network while utilising the available spectral resources without additional infrastructure deployment costs. The research work can be extended to apply an effective relay selection approach for a user mobility scenario

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Interference mitigation in D2D communication underlaying LTE-A network

    Get PDF
    The mobile data traffic has risen exponentially in recent days due to the emergence of data intensive applications, such as online gaming and video sharing. It is driving the telecommunication industry as well as the research community to come up with new paradigms that will support such high data rate requirements within the existing wireless access network, in an efficient and effective manner. To respond to this challenge, device-to-device (D2D) communication in cellular networks is viewed as a promising solution, which is expected to operate, either within the coverage area of the existing eNB and under the same cellular spectrum (in-band) or separate spectrum (out-band). D2D provides the opportunity for users located in close proximity of each other to communicate directly, without traversing data traffic through the eNB. It results in several transmission gains, such as improved throughput, energy gain, hop gain, and reuse gain. However, integration of D2D communication in cellular systems at the same time introduces new technical challenges that need to be addressed. Containment of the interference among D2D nodes and cellular users is one of the major problems. D2D transmission radiates in all directions, generating undesirable interference to primary cellular users and other D2D users sharing the same radio resources resulting in severe performance degradation. Efficient interference mitigation schemes are a principal requirement in order to optimize the system performance. This paper presents a comprehensive review of the existing interference mitigation schemes present in the open literature. Based on the subjective and objective analysis of the work available to date, it is also envisaged that adopting a multi-antenna beamforming mechanism with power control, such that the transmit power is maximized toward the direction of the intended D2D receiver node and limited in all other directions will minimize the interference in the network. This could maximize the sum throughput and hence, guarantees the reliability of both the D2D and cellular connections

    Efficient Device to Device Communications Underlaying Heterogeneous Networks

    Get PDF
    Device-to-Device communications have the great potential to bring significant performance boost to the conventional heterogeneous network by reusing cellular resources. In cellular networks, Device-to-Device communication is defined as two user equipments in a close range communicating directly with each other without going through the base station, thus offloading cellular traffic from cellular networks. In addition to improve network spectral efficiency, D2D communication can also improve energy efficiency and user experience. However, the co-existence of D2D communication on the same spectrum with cellular users can cause severe interference to the primary cellular users. Thus the performance of cellular users must be assured when supporting underlay D2D users. In this work, we have investigated cross-layer optimization, resource allocation and interference management schemes to improve user experience, system spectral efficiency and energy efficiency for D2D communication underlaying heterogeneous networks. By exploiting frequency reuse and multi-user diversity, this research work aims to design wireless system level algorithms to utilize the spectrum and energy resources efficiently in the next generation wireless heterogeneous network
    • …
    corecore