1,234 research outputs found

    Unified and Distributed QoS-Driven Cell Association Algorithms in Heterogeneous Networks

    Full text link
    This paper addresses the cell association problem in the downlink of a multi-tier heterogeneous network (HetNet), where base stations (BSs) have finite number of resource blocks (RBs) available to distribute among their associated users. Two problems are defined and treated in this paper: sum utility of long term rate maximization with long term rate quality of service (QoS) constraints, and global outage probability minimization with outage QoS constraints. The first problem is well-suited for low mobility environments, while the second problem provides a framework to deal with environments with fast fading. The defined optimization problems in this paper are solved in two phases: cell association phase followed by the optional RB distribution phase. We show that the cell association phase of both problems have the same structure. Based on this similarity, we propose a unified distributed algorithm with low levels of message passing to for the cell association phase. This distributed algorithm is derived by relaxing the association constraints and using Lagrange dual decomposition method. In the RB distribution phase, the remaining RBs after the cell association phase are distributed among the users. Simulation results show the superiority of our distributed cell association scheme compared to schemes that are based on maximum signal to interference plus noise ratio (SINR)

    A Noncooperative Power Control Game in Multiple-Access Fading Channels with QoS Constraints

    Get PDF
    In this paper, a game-theoretic analysis for the resource allocation policies in fading multiple-access channels (MAC) in the presence of quality of service (QoS) constraints is performed. Effective capacity, which provides the maximum constant arrival rate, or throughput, that a given service process can support while satisfying statistical delay constraints, is considered in a multiuser scenario. We assume that the channel side information (CSI) is available at both the receiver and transmitters, and the transmitters are selfish, rational with certain QoS constraints and average power limitations. Without the aid of the receiver, we prove that there is always a unique admissible Nash equilibrium of the noncooperative power control game. The Nash equilibrium of the power control game is proved to be always inside the rate region where successive decoding techniques are used at the receiver

    A Noncooperative Power Control Game in Multiple-Access Fading Channels with QoS Constraints

    Get PDF
    In this paper, a game-theoretic analysis for the resource allocation policies in fading multiple-access channels (MAC) in the presence of quality of service (QoS) constraints is performed. Effective capacity, which provides the maximum constant arrival rate, or throughput, that a given service process can support while satisfying statistical delay constraints, is considered in a multiuser scenario. We assume that the channel side information (CSI) is available at both the receiver and transmitters, and the transmitters are selfish, rational with certain QoS constraints and average power limitations. Without the aid of the receiver, we prove that there is always a unique admissible Nash equilibrium of the noncooperative power control game. The Nash equilibrium of the power control game is proved to be always inside the rate region where successive decoding techniques are used at the receiver

    A Noncooperative Power Control Game in Multiple-Access Fading Channels with QoS Constraints

    Get PDF
    In this paper, a game-theoretic analysis for the resource allocation policies in fading multiple-access channels (MAC) in the presence of quality of service (QoS) constraints is performed. Effective capacity, which provides the maximum constant arrival rate, or throughput, that a given service process can support while satisfying statistical delay constraints, is considered in a multiuser scenario. We assume that the channel side information (CSI) is available at both the receiver and transmitters, and the transmitters are selfish, rational with certain QoS constraints and average power limitations. Without the aid of the receiver, we prove that there is always a unique admissible Nash equilibrium of the noncooperative power control game. The Nash equilibrium of the power control game is proved to be always inside the rate region where successive decoding techniques are used at the receiver
    • …
    corecore