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A Noncooperative Power Control Game in
Multiple-Access Fading Channels with QoS

Constraints
Deli Qiao, Mustafa Cenk Gursoy, Senem Velipasalar

Department of Electrical Engineering
University of Nebraska-Lincoln, Lincoln, NE 68588

Email: dqiao726@huskers.unl.edu, gursoy@engr.unl.edu, velipasa@engr.unl.edu

Abstract—1 In this paper, a game-theoretic analysis for the
resource allocation policies in fading multiple-access channels
(MAC) in the presence of quality of service (QoS) constraints
is performed. Effective capacity, which provides the maximum
constant arrival rate, or throughput, that a given service process
can support while satisfying statistical delay constraints, is
considered in a multiuser scenario. We assume that the channel
side information (CSI) is available at both the receiver and
transmitters, and the transmitters are selfish, rational with
certain QoS constraints and average power limitations. Without
the aid of the receiver, we prove that there is always a unique
admissible Nash equilibrium of the noncooperative power control
game. The Nash equilibrium of the power control game is proved
to be always inside the rate region where successive decoding
techniques are used at the receiver.

I. INTRODUCTION

Multiuser channels have been extensively studied over the
years from an information-theoretic point of view [1]-[5].
For example, Tse and Hanly [4] characterized the capacity
region and optimal resource allocation policies. This approach
is powerful and obtains all boundary points. Recently, game
theory has been incorporated in the analysis of power control
policies [6]-[7]. For instance, Lai and Gamal [7] provided
a game-theoric solution to the resource allocation problem
in multiaccess fading channels. In this paper, the maximum
sum-rate of the capacity region has been shown to be the
unique Nash equilibrium, where at most one user with the
strongest channel decides to transmit, which is the same to
K-H algorithm [3]. However, these information theoretical
studies have not incorporated the delay and QoS constraints.

In this paper, we consider statistical QoS constraints and
propose a noncooperative power control game where the
players are the multiple access users. To carry on this analysis,
we employ the concept of effective capacity [8], which can
be seen as the maximum constant arrival rate that a given
time-varying service process can support while satisfying
statistical QoS guarantees. Effective capacity formulation uses
the large deviations theory and incorporates the statistical
QoS constraints by capturing the rate of decay of the buffer
occupancy probability for large queue lengths. The analysis
and application of effective capacity in various settings has

1This work was supported by the National Science Foundation under Grants
CNS–0834753, and CCF–0917265.

Fig. 1. The system model.

attracted much interest recently (see e.g., [9]–[11] and refer-
ences therein).

In our proposed game, we assume that the channel state is
available at both the transmitters and the receiver. The players
are modeled as selfish, rational and are interested in maxi-
mizing their own normalized effective capacity, or achievable
throughput (rate), subject to an average power constraint. The
receiver is not permitted to influence the users in the decision-
making process. Then, without the aid of the receiver, the
users treat the signals of the other users as noise. This worst
assumption does not take into consideration that the signal at
the receiver can be successively decoded in any order. The
unique admissible Nash equilibrium of the game can achieve
the maximum sum-rate satisfying each user’s QoS constraints
for this model, which is no longer the maximal sum-rate point
on the achievable region where successive decoding techniques
are allowed at the receiver side. Remarkably, while at most one
user transmits in previous results [7], all users can transmit
simultaneously due to the introduction of QoS constraints.

The paper is organized as follows. Section II provides the
preliminaries on multiple-access fading channels, and briefly
discusses the concept of effective capacity as a performance
metric under statistical QoS constraints. In Section III, we
formulate the static noncooperative power control game and
propose an optimal resource allocation policy. Finally, Section
IV concludes this paper.
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II. PRELIMINARIES

A. System Model

We consider an uplink scenario where M users with individ-
ual power constraints and QoS limitations communicate with
a single receiver as shown in Fig. 1. It is assumed that the
transmitters generate data sequences which are divided into
frames of duration T . These data frames are initially stored
in the buffers before they are transmitted over the wireless
channel. The discrete-time signal received at the receiver in
the ith symbol duration is given by

y[i] =
M∑

j=1

hj [i]xj [i] + n[i], i = 1, 2, . . . (1)

where M is the number of users, xj [i] and hj [i] denote the
complex-valued channel input and the fading coefficient of the
jth user, respectively. We assume that hj [i]s are jointly sta-
tionary and ergodic discrete-time processes, and we denote the
magnitude-square of the fading coefficients by zj [i] = |hj [i]|2.
The channel input of user j is subject to an average energy
constraint E{|xj [i]|2} ≤ P̄j/B for all i, and we assume that
the bandwidth available in the system is B, so symbol rate
is assumed to be B complex symbols per second, indicating
that the average power of the system is constrained by P̄ . y[i]
is the channel output. Above, n[i] is a zero-mean, circularly
symmetric, complex Gaussian random variable with variance
E{|n[i]|2} = N0. The additive Gaussian noise samples {n[i]}
are assumed to form an independent and identically distributed
(i.i.d.) sequence.

In this work, we suppose that the channel state z =
{z1, . . . , zM} is available at the both the transmitters and
the receiver. We denote the average transmitted signal to
noise ratio of user j as SNRj = P̄j

N0B . Also, we denote
Pj [i] as the instantaneous transmit power in the ith frame.
The instantaneous transmitted SNR level for receiver j now
becomes μj [i] = Pj [i]

N0B . For a given power allocation policy
U = {μ1(z), · · · , μM (z)} where μj ≥ 0∀j can be viewed as
a function of z, the achievable rates are described by [4]

R(U) =

{
R : R(S) ≤ Ez

⎧⎨
⎩B log2

⎛
⎝1 +

∑
j∈S

μj(z)zj

⎞
⎠
⎫⎬
⎭ ,

∀S ⊂ {1, · · · ,M}
}

. (2)

Then, the rate region when all transmitters as well as the
receiver have CSI is given by

RMAC =
⋃
U∈F

R(U) (3)

where F is the set of all feasible power control policies
satisfying the average power constraint

F ≡ {U : Ez {μj(z) ≤ SNRj , μj ≥ 0, ∀j}} (4)

where SNRj = P̄j/(N0B) denotes the average transmitted
signal-to-noise ratio of user j. The maximum instantaneous
rate at a given state with any decoding order π can be obtained

as

Rπ(k) = B log2

(
1 +

μπ(k)zπ(k)

1 +
∑M

i=k+1 μπ(i)zπ(i)

)
bits/s, k = 1, · · · , M.

(5)

B. Effective Capacity

In [8], Wu and Negi defined the effective capacity as the
maximum constant arrival rate2 that a given service process
can support in order to guarantee a statistical QoS requirement
specified by the QoS exponent θ. If we define Q as the
stationary queue length, then θ is the decay rate of the tail
distribution of the queue length Q:

lim
q→∞

log P (Q ≥ q)
q

= −θ. (6)

Therefore, for large qmax, we have the following approxima-
tion for the buffer violation probability: P (Q ≥ qmax) ≈
e−θqmax . Hence, while larger θ corresponds to more strict
QoS constraints, smaller θ implies looser QoS guarantees.
Similarly, if D denotes the steady-state delay experienced in
the buffer, then P (D ≥ dmax) ≈ e−θδdmax for large dmax,
where δ is determined by the arrival and service processes
[10].

The effective capacity is given by

C(θ) = −Λ(−θ)
θ

= − lim
t→∞

1
θt

loge E{e−θS[t]} bits/s (7)

where S[t] =
∑t

i=1 s[i] is the time-accumulated service
process, and {s[i], i = 1, 2, . . .} denote the discrete-time
stationary and ergodic stochastic service process.

In this paper, in order to simplify the analysis while consid-
ering general fading distributions, we assume that the fading
coefficients stay constant over the frame duration T and vary
independently for each frame and each user. In this scenario,
s[i] = TR[i], where R[i] is the instantaneous service rate in
the ith frame duration [iT ; (i+1)T ]. Then, (7) can be written
as

C(θ) = − 1
θT

loge Ez{e−θTR[i]} bits/s (8)

where R[i] denotes the instantaneous rate sequence varying
with z. The effective capacity normalized by bandwidth B is

C(θ) =
C(θ)
B

bits/s/Hz. (9)

III. THE POWER CONTROL GAME

In this Section, we first consider the two-user case. Suppose
that (θ1, θ2) is a vector composed of the QoS constraint
for the two users. Then, βj = θjTB

loge 2 , j = 1, 2 denotes the
corresponding normalized QoS constraint. We assume that the
QoS constraints and the power constraints of the users are
known by each user.

In the static noncooperative game, the strategy of user j
is the power control policy μj(z). We choose the normalized

2For time-varying arrival rates, effective capacity specifies the effective
bandwidth of the arrival process that can be supported by the channel.
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effective capacity Cj(U) as the corresponding payoff. The goal
of user j is

max
μj

Cj(μj , μ−j) s.t. μj ∈ Fj (10)

where F has been given in (4), and μ−j denotes the power
control policies of the other users. Since the base station is
not a player of the game, we assume that each user will treat
the signal of the other user as interference, and users have no
information about the power control policy of the others. For
a given power control policy μ2(z1, z2) of user 2, the payoff
of user 1 is given by

C1(U) = − 1

θ1TB
loge E

{
e
−θ1TB log2

(
1+

μ1(z1,z2)
1+μ2(z1,z2)z2

)}

= − 1

θ1TB
loge

(∫ ∞

0

∫ ∞

0

(
1 +

μ1(z1, z2)z1

1 + μ2(z1, z2)z2

)−β1

pz(z1, z2)dz1dz2

)
(11)

where pz(z1, z2) is the joint probability density function of
the channel state. The payoff for user 2 is chosen similarly.
Obviously, the payoff of each user depends on the two strate-
gies (μ1(z1, z2), μ2(z1, z2)). First, the following definition is
needed for the ensuing analysis [12].

Definition 1: A Nash equilibrium is a policy pair (μ∗
1, μ

∗
2)

such that

C1(μ∗
1, μ

∗
2) ≥ C1(μ′

1, μ
∗
2), ∀μ′

1 ∈ F1

C2(μ∗
1, μ

∗
2) ≥ C2(μ∗

1, μ
′
2), ∀μ′

2 ∈ F2. (12)

As indicated by the definition, no user can benefit by deviating
from the optimal strategy individually. For any fixed power
policy μ2(z1, z2), the optimal strategy of user 1 is the solution
to the following maximization problem

C1 = max
μ1

− 1

θ1TB
loge

(∫ ∞

0

∫ ∞

0

(
1 +

μ1(z1, z2)z1

1 + μ2(z1, z2)z2

)−β1

· pz(z1, z2)dz1dz2

)
,

s.t.
∫ ∞

0

∫ ∞

0

μ1(z1, z2)pz(z1, z2)dz1dz2 ≤ SNR1, μ1(z1, z2) ≥ 0

(13)

which can be further reduced to the following minimization
problem

min
μ1

∫ ∞

0

∫ ∞

0

(
1 +

μ1(z1, z2)z1

1 + μ2(z1, z2)z2

)−β1

pz(z1, z2)dz1dz2,

s.t.
∫ ∞

0

∫ ∞

0

μ1(z1, z2)pz(z1, z2)dz1dz2 ≤ SNR1,

μ1(z1, z2) ≥ 0. (14)

The solution to the above optimization problem is the power
allocation (similarly as in [9])

μ1(z1, z2) =

⎛
⎝ (1 + μ2(z1, z2)z2)

β1
β1+1

α
1

β1+1

1 z
β1

β1+1

1

− 1 + μ2(z1, z2)z2

z1

⎞
⎠

+

(15)
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Fig. 2. The strategy regions of different number of users transmitting for
the two-user case.

=
1 + μ2(z1, z2)z2

z1

((
z1

α1(1 + μ2(z1, z2)z2)

) 1
β1+1

− 1

)+

(16)

where (x)+ = max{x, 0}, α1 is the threshold chosen to satisfy
the following power constraint

∫ ∞

α1

∫ ∞

0

⎛
⎝ (1 + μ2(z1, z2)z2)

β1
β1+1

α
1

β1+1
1 z

β1
β1+1
1

− 1 + μ2(z1, z2)z2

z1

⎞
⎠

+

· pz(z1, z2)dz2dz1 = SNR1.
(17)

Similarly, the optimal power policy of user 2 can be derived
as

μ2(z1, z2) =

⎛
⎝ (1 + μ1(z1, z2)z1)

β2
β2+1

α
1

β2+1
2 z

β2
β2+1
2

− 1 + μ1(z1, z2)z1

z2

⎞
⎠

+

(18)

where α2 is the threshold chosen to satisfy the power
constraint

∫ ∞

α2

∫ ∞

0

⎛
⎝ (1 + μ1(z1, z2)z1)

β2
β2+1

α
1

β2+1
2 z

β2
β2+1
2

− 1 + μ1(z1, z2)z1

z2

⎞
⎠

+

· pz(z1, z2)dz1dz2 = SNR2.
(19)

Obviously, the optimal policy of one user depends largely
on its assumption of the other user’s strategy. According to
the assumption, it will adjust its threshold and power control
policy to achieve the maximum normalized effective capacity.
At the Nash equilibrium, the power constraints of the two users
should be satisfied with equality. Considering the expressions
(15) and (18), we have the following result.

Proposition 1: For each pair of (α1, α2), there is a unique
pair of strategies (μ1, μ2). The Nash equilibrium, if it exists, of
our proposed power game is not the maximum sum rate point
of the rate region where superposition coding with successive
decoding is employed.

Proof: Please see Appendix A. �
According to the proof, there will be a disjoint division of
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the channel state, each region corresponding to a specific set
of users transmitting. Fig. 2 shows an example of the partition
of the channel state space. If z lies in region Z0, both users see
weak channels compared to the background noise and decide
not to transmit. If z lies in region Z1 (or Z2), user 2 (or
user 1, respectively) decides that the guessed interference of
the other user plus the noise is so high that it decides not to
transmit and conserve the power. When z falls into region Z3,
both users see a relatively weak interference from the other
user and allocate power according the best strategy. The power
level in this area is a solution to (29) and (30), based on the
assumption that the two users are rational.

Obviously, for each pair of (α1, α2), the power strategy for
each user is unique. Then, we have the following results.

Proposition 2: There is always a Nash equilibrium that can
maximize the sum-rate throughput. And the optimal power
control policies of the two users are given in (20) and (21)
on the next page where (μ∗

1(z1, z2), μ∗
2(z1, z2)) is the pair of

power allocation policies solving (29) with a given (α∗
1, α2∗)

satisfying the power constraints, which can be derived numer-
ically.

Proof: Please see Appendix B. �
We have proved the existence of the Nash equilibrium.

Before proceeding any further, we take advantage of the
concept of admissible Nash equilibrium ([12, Definition 3.3]).

Definition 2: A Nash equilibrium strategy pair (μ∗
1, μ

∗
2)

is said to be admissible if there exists no other Nash
equilibrium strategy pair (μ′

1, μ
′
2) such that C1(μ′

1, μ
′
2) ≥

C1(μ∗
1, μ

∗
2), C2(μ′

1, μ
′
2) ≥ C2(μ∗

1, μ
∗
2), and at least one of the

equalities is strict.

With this notation, we have the following result.

Proposition 3: There is always a unique admissible Nash
equilibrium which maximizes the sum-rate.

Proof: Please see Appendix C. �
Then, the algorithm stated in Proposition 2 will obviously

reach the unique admissible Nash equilibrium if the two
users agree on starting the iteration with the same large
enough threshold. The two users will only need to compute
the threshold pair (α∗

1, α
∗
2) off-line according to the channel

statistics and the complete information of the other user. In the
example, we choose SNR1 = −12.33 dB, SNR2 = −23.67 dB,
β1 = 1, β2 = 2. At the Nash Equilibrium, α∗

1 = 1.0025, α∗
2 =

1.9994, C1 = 0.1329 bps/Hz, C2 = 0.0165 bps/Hz. The power
allocation of the two users is shown in Fig. 3. With the same
condition, when power control is allowed, (0.1318, 0.0172)
is achievable if the users are decoded in the order (1,2),
and (0.1330, 0.0169) is achievable if the users are decoded
in the order (2,1) according to the optimal policies given
in [14]. Obviously, the Nash equilibrium in the presence of
QoS constraints is no longer the maximal sum-rate point of
the achievable rate region where successive decoding is used.
If each user perform the power control policy for single-
input single-output specified in [9], the point achieved is
(0.1317, 0.0159), the sum of which is less than that obtained
at Nash equilibrium.
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Fig. 3. The power allocation for the two-user case.

IV. CONCLUSION

In this paper, we have characterized the noncooperative
power control policy of two-user multiple-access fading chan-
nels by considering effective capacity. We have shown that at
most two users will be transmitting due to the introduction of
QoS constraints, and hence the maximum sum-rate is always
less than the one achieved if successive decoding techniques
are considered. We have provided the optimal power control
policies at the Nash equilibrium. In particular, we have proved
the uniqueness of the admissible Nash equilibrium of our
proposed game. Numerical results in consistence with our
analysis are provided as well.

APPENDIX

A. Proof for Proposition 1

With (16), we can find that if user 1 decides to transmit, or
μ1(z1, z2) > 0, we should have

z1

α1(1 + μ2(z1, z2)z2)
> 1. (22)

This implies that when μ1(z1, z2) > 0, the channel state
of user 1 normalized by the background noise and the in-
terference from user 2 should be greater than the threshold.
Similarly, we can derive the condition for user 2 to allocate
power to the current state as

z2

α2(1 + μ1(z1, z2)z1)
> 1. (23)

Therefore, it is possible that both of the conditions (22)
and (23) can be satisfied simultaneously. Then, we will have
at most two users transmitting at the same time. Although
implicitly, we assume that the pair (α1, α2) exist.

We can see that when only user 1 transmits, we have
μ2(z1, z2) = 0, and condition (22) can be satisfied while (23)
cannot. According to (15), we can find that

μ1(z1, z2) =
1

α
1

β1+1

1 z
β1

β1+1

1

− 1
z1

. (24)

Substituting μ1(z1, z2) and μ2(z1, z2) into (22) and (23), we

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2010 proceedings.



μ∗
1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

α∗
1

1
β1+1 z

β1
β1+1
1

− 1
z1

, z1 > α∗
1&

z2
α∗

2
≤
(

z1
α∗

1

) 1
β1+1

μ∗
1(z1, z2), z1 > α∗

1&
(

z1
α∗

1

) 1
β1+1

< z2
α∗

2
<
(

z1
α∗

1

)β2+1

0, otherwise

, (20)

μ∗
2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

α∗
2

1
β2+1 z

β2
β2+1
2

− 1
z2

, z2 > α∗
2&

z1
α∗

1
≤
(

z2
α∗

2

) 1
β2+1

μ∗
2(z1, z2), z2 > α∗

2&
(

z2
α∗

2

) 1
β2+1

< z1
α∗

1
<
(

z2
α∗

2

)β1+1

0, otherwise

(21)

have

Z1 =

{
z : z1 > α1,

z2

α2
≤
(

z1

α1

) 1
β1+1

}
(25)

which specifies the region in which only user 1 transmits.
Similarly, when only user 2 transmits, we have μ1(z1, z2) = 0.
μ2(z1, z2) is given by

μ2(z1, z2) =
1

α
1

β2+1

2 z
β2

β2+1

2

− 1
z2

(26)

in the region confined by

Z2 =

{
z : z2 > α2,

z1

α1
≤
(

z2

α2

) 1
β2+1

}
. (27)

When both users transmit, (22) and (23) can be satisfied.

We can easily see that μ1(z1, z2) is upperbounded by
z2
α2

−1

z1

and μ2(z1, z2) is upperbounded by
z1
α1

−1

z2
. From previous

discussion, this region lies in

Z3 =

{
z : z1 > α1,

(
z1

α1

) 1
β1+1

<
z2

α2
<

(
z1

α1

)β2+1
}

.

(28)

We will have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ1(z1, z2) = (1+μ2(z1,z2)z2)
β1

β1+1

α
1

β1+1
1 z

β1
β1+1
1

− 1+μ2(z1,z2)z2
z1

μ2(z1, z2) = (1+μ1(z1,z2)z1)
β2

β2+1

α
1

β2+1
2 z

β2
β2+1
2

− 1+μ1(z1,z2)z1
z2

(29)

which can be written as⎧⎪⎨
⎪⎩

1 + μ1(z1, z2)z1 + μ2(z1, z2)z2 =
(

z1
α1

) 1
β1+1

(1 + μ2(z1, z2)z2)
β1

β1+1

1 + μ1(z1, z2)z1 + μ2(z1, z2)z2 =
(

z2
α2

) 1
β2+1

(1 + μ1(z1, z2)z1)
β2

β2+1

(30)

Given α1, α2, z1, z2, we can find from (29) that μ1(z1, z2)
is a concave function of μ2(z1, z2) and μ2(z1, z2) is a concave
function of μ1(z1, z2). The intersections of these two curves
in the μ1 − μ2 plane denote the solutions satisfying the
equations. Consider first the function μ1(z1, z2) of μ2(z1, z2),
the definition domain to ensure μ1(z1, z2) > 0 is μ2(z1, z2) ∈

(0,
z1
α1

−1

z2
). The curve intersects with μ2 = 0 at

μ1(z1, z2) =
1

α
1

β1+1

1 z
β1

β1+1

1

− 1
z1

> 0. (31)

Similarly, the definition domain for function μ2(z1, z2) of

μ1(z1, z2) is μ1(z1, z2) ∈ (0,
z2
α2

−1

z1
). The curve intersects with

μ1 = 0 at

μ2(z1, z2) =
1

α
1

β2+1

2 z
β2

β2+1

2

− 1
z2

> 0. (32)

Then, there will be at least one intersection between the two
curves. Denote (μ2

1(z1, z2), μ2
2(z1, z2)) as one intersection.

Suppose there is another point (μ′
1
2(z1, z2), μ′

2
2(z1, z2))

satisfying (29). Without loss of generality, we assume
μ′

1
2(z1, z2) < μ2

1(z1, z2). According to the first equation in
(30), we can find that μ′

2
2(z1, z2) < μ2

2(z1, z2) as well. Then,
these two points are on a straight line l with positive slope
in the μ1 − μ2 plane. Due to the concavity of the curve,
if the interception of l on μ1 = 0 is less than 0, then the
curve for μ2(z1, z2) as a function of μ1(z1, z2) intersects
with μ1 = 0 at a negative value, i.e., μ2(z1, z2) < 0 at
μ1(z1, z2) = 0. This violates (32). Similarly, if the interception
of l on μ2 = 0 is less than 0, we can derive that μ1(z1, z2) < 0
at μ2(z1, z2) = 0, violating (31). Thus, there is only one
solution to the equations, i.e., there is a unique pair of (μ1, μ2)
for a given pair (α1, α2).

From the above discussion, we can see that at most two
users will be transmitting at the same time, and hence the sum-
rate throughput at the Nash equilibrium is always suboptimal
to the one derived when the superposition coding technique
with successive decoding is used, where there is always at
least one user viewing no interference from the other users.�

B. Proof for Proposition 2

We can rewrite (17) and (19) as

∫ ∫
Z1

⎛
⎝ 1

α
1

β1+1
1 z

β1
β1+1
1

− 1

z1

⎞
⎠ pz(z1, z2)dz2dz1

+

∫ ∫
Z3

μ2
1(z1, z2)pz(z1, z2)dz2dz1 = SNR1, (33)
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Fig. 4. The average SNRs with respect to α1 and α2 in Rayleigh fading
channel.

∫ ∫
Z2

⎛
⎝ 1

α
1

β2+1
2 z

β2
β2+1
1

− 1

z2

⎞
⎠ pz(z1, z2)dz2dz1

+

∫ ∫
Z3

μ2
2(z1, z2)pz(z1, z2)dz2dz1 = SNR2. (34)

Combining previous discussions on the division of the rate re-
gions and the power allocation strategy, we plot SNR1 and SNR2

as functions of α1 and α2 in the Rayleigh fading channel with
unit expected value in Fig. 4 as an example. It can be easily
found that SNR1 is a nonincreasing function of α1, and a non-
decreasing function of α2, while μ2(z1, z2) is a nonincreasing
function of α2, and a nondecreasing function of α1. Then,
for any two threshold pairs (α′

1, α
′
2) and (α∗

1, α
∗
2) with α′

1 =
α∗

1, α
′
2 ≥ α∗

2, we will have SNR1(α′
1, α

′
2) ≥ SNR1(α∗

1, α
∗
2) and

SNR2(α′
1, α

′
2) ≤ SNR2(α∗

1, α
∗
2), where SNRi(α1, α2) represents

the SNR of user i associated with the given threshold pair. Thus,
similar to [7], we let α1(0) = ε, α2(0) = ε with ε close to the
maximum channel gain that can be achieved, in which case
SNRi(α1(0), α2(0)), i = 1, 2 are close to 0. First, fix α1(n−1)
and find α2(n) satisfying the average power constraint of user
1, which is a solution to (34). At this step, we have α2(n) ≤
α2(n−1) and SNR1(α1(n−1), α2(n)) ≤ SNR1. Then, fix α2(n)
to find the α1(n) satisfying the average power constraint of
user 2, which is a solution to (33). At this step, we have
α1(n) ≤ α1(n − 1) and SNR2(α1(n), α2(n)) ≤ SNR2. Itera-
tively, we will obtain nonincreasing sequences α1(n), α2(n)
with SNR1(α1(n), α2(n)) → SNR1 and SNR2(α1(n), α2(n)) →
SNR2. Since SNRi, i = 1, 2 are limited value, we have that both
of the sequences are lowerbounded. Then, there must exist the
constants [13]

inf
n

α1(n) = lim
n→∞α1(n) = α∗

1, SNR1(α∗
1, α

∗
2) = SNR1, (35)

inf
n

α2(n) = lim
n→∞α2(n) = α∗

2, SNR2(α∗
1, α

∗
2) = SNR2. (36)

Thus, throughout the above process, we have proved that
there must be a pair of thresholds (α∗

1, α
∗
2) at the Nash

equilibrium. And the optimal power policies (μ∗
1, μ

∗
2) can be

derived correspondingly. �

C. Proof for Proposition 3

Let (μ∗
1, μ

∗
2) and (μ′

1, μ
′
2) be the two pairs of power policies

at the Nash equilibrium. The corresponding threshold pairs
are (α′

1, α
′
2) and (α∗

1, α
∗
2). These pairs are the solutions to the

equations (33) and (34). Combining previous discussion on
the increasing and decreasing characteristics of SNRi, i = 1, 2
in αi, i = 1, 2, we can easily derive that α∗

1 = α′
1 iff

α∗
2 = α′

2, α∗
1 > α′

1 iff α∗
2 > α′

2, and α∗
1 < α′

1 iff α∗
2 < α′

2.
Then, the threshold pairs must have a strict order, and we
assume that α∗

1 > α′
1, α∗

2 > α′
2. Then, with the corresponding

unique power strategies (μ∗
1, μ

∗
2) and (μ′

1, μ
′
2), we can show

that C1(μ∗
1, μ

∗
2) > C1(μ′

1, μ
′
2) and C2(μ∗

1, μ
∗
2) > C2(μ′

1, μ
′
2).

Simply put, with the division of the channel state shown
previously, we can see that decreasing the threshold pair
will extend the area for Z3, and according to (30), we can
find that μ1, μ2 will increase as well, i.e., both of the users
have to allocate more power to compete with the other user.
As it turns out, both user see increased interference from
the other user, implying that C1(μ∗

1, μ
∗
2) > C1(μ′

1, μ
′
2) and

C2(μ∗
1, μ

∗
2) > C2(μ′

1, μ
′
2).

Therefore, the Nash equilibrium pairs have strict order and
the equilibrium power strategies (μ∗

1, μ
∗
2) corresponding to the

largest threshold pair (α∗
1, α

∗
2) will achieve the largest sum

rate. Hence, we prove the uniqueness of admissible Nash
equilibrium. �
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