8 research outputs found

    Performance evaluation of the TFD-capable dynamic QoS assurance of HD video streaming in well-dimensioned network

    Get PDF
    The Traffic Flow Description (TFD) option of the IP protocol is an experimental option, designed by the Authors and described by the IETF’s Internet Draft. This option was intended for signalling for QoS purposes. Knowledge about forthcoming traffic (such as the amount of data that will be transferred in a given period of time) is conveyed in the fields of the option between end-systems. TFD-capable routers on a path (or a multicast tree) between the sender and receiver(s) are able to read this information, process it and use it for bandwidth allocation. If the time horizons are short enough, bandwidth allocation will be performed dynamically. In the paper a performance evaluation of an HD video transmission QoS assured with the use of the TFD option is presented. The analysis was made for a variable number of video streams and a variable number of TCP flows that compete with the videos for the bandwidth of the shared link. Results show that the dynamic bandwidth allocation using the TFD option better assures the QoS of HD video than the classic solution, based on the RSVP protocol

    QoE-Aware Resource Allocation For Crowdsourced Live Streaming: A Machine Learning Approach

    Get PDF
    In the last decade, empowered by the technological advancements of mobile devices and the revolution of wireless mobile network access, the world has witnessed an explosion in crowdsourced live streaming. Ensuring a stable high-quality playback experience is compulsory to maximize the viewers’ Quality of Experience and the content providers’ profits. This can be achieved by advocating a geo-distributed cloud infrastructure to allocate the multimedia resources as close as possible to viewers, in order to minimize the access delay and video stalls. Additionally, because of the instability of network condition and the heterogeneity of the end-users capabilities, transcoding the original video into multiple bitrates is required. Video transcoding is a computationally expensive process, where generally a single cloud instance needs to be reserved to produce one single video bitrate representation. On demand renting of resources or inadequate resources reservation may cause delay of the video playback or serving the viewers with a lower quality. On the other hand, if resources provisioning is much higher than the required, the extra resources will be wasted. In this thesis, we introduce a prediction-driven resource allocation framework, to maximize the QoE of viewers and minimize the resources allocation cost. First, by exploiting the viewers’ locations available in our unique dataset, we implement a machine learning model to predict the viewers’ number near each geo-distributed cloud site. Second, based on the predicted results that showed to be close to the actual values, we formulate an optimization problem to proactively allocate resources at the viewers’ proximity. Additionally, we will present a trade-off between the video access delay and the cost of resource allocation. Considering the complexity and infeasibility of our offline optimization to respond to the volume of viewing requests in real-time, we further extend our work, by introducing a resources forecasting and reservation framework for geo-distributed cloud sites. First, we formulate an offline optimization problem to allocate transcoding resources at the viewers’ proximity, while creating a tradeoff between the network cost and viewers QoE. Second, based on the optimizer resource allocation decisions on historical live videos, we create our time series datasets containing historical records of the optimal resources needed at each geo-distributed cloud site. Finally, we adopt machine learning to build our distributed time series forecasting models to proactively forecast the exact needed transcoding resources ahead of time at each geo-distributed cloud site. The results showed that the predicted number of transcoding resources needed in each cloud site is close to the optimal number of transcoding resources

    Cooperative Multi-Bitrate Video Caching and Transcoding in Multicarrier NOMA-Assisted Heterogeneous Virtualized MEC Networks

    Get PDF
    Cooperative video caching and transcoding in mobile edge computing (MEC) networks is a new paradigm for future wireless networks, e.g., 5G and 5G beyond, to reduce scarce and expensive backhaul resource usage by prefetching video files within radio access networks (RANs). Integration of this technique with other advent technologies, such as wireless network virtualization and multicarrier non-orthogonal multiple access (MC-NOMA), provides more flexible video delivery opportunities, which leads to enhancements both for the network's revenue and for the end-users' service experience. In this regard, we propose a two-phase RAF for a parallel cooperative joint multi-bitrate video caching and transcoding in heterogeneous virtualized MEC networks. In the cache placement phase, we propose novel proactive delivery-aware cache placement strategies (DACPSs) by jointly allocating physical and radio resources based on network stochastic information to exploit flexible delivery opportunities. Then, for the delivery phase, we propose a delivery policy based on the user requests and network channel conditions. The optimization problems corresponding to both phases aim to maximize the total revenue of network slices, i.e., virtual networks. Both problems are non-convex and suffer from high-computational complexities. For each phase, we show how the problem can be solved efficiently. We also propose a low-complexity RAF in which the complexity of the delivery algorithm is significantly reduced. A Delivery-aware cache refreshment strategy (DACRS) in the delivery phase is also proposed to tackle the dynamically changes of network stochastic information. Extensive numerical assessments demonstrate a performance improvement of up to 30% for our proposed DACPSs and DACRS over traditional approaches.Comment: 53 pages, 24 figure

    Security and blockchain convergence with internet of multimedia things : current trends, research challenges and future directions

    Get PDF
    The Internet of Multimedia Things (IoMT) orchestration enables the integration of systems, software, cloud, and smart sensors into a single platform. The IoMT deals with scalar as well as multimedia data. In these networks, sensor-embedded devices and their data face numerous challenges when it comes to security. In this paper, a comprehensive review of the existing literature for IoMT is presented in the context of security and blockchain. The latest literature on all three aspects of security, i.e., authentication, privacy, and trust is provided to explore the challenges experienced by multimedia data. The convergence of blockchain and IoMT along with multimedia-enabled blockchain platforms are discussed for emerging applications. To highlight the significance of this survey, large-scale commercial projects focused on security and blockchain for multimedia applications are reviewed. The shortcomings of these projects are explored and suggestions for further improvement are provided. Based on the aforementioned discussion, we present our own case study for healthcare industry: a theoretical framework having security and blockchain as key enablers. The case study reflects the importance of security and blockchain in multimedia applications of healthcare sector. Finally, we discuss the convergence of emerging technologies with security, blockchain and IoMT to visualize the future of tomorrow's applications. © 2020 Elsevier Lt

    Cloud media video encoding:review and challenges

    Get PDF
    In recent years, Internet traffic patterns have been changing. Most of the traffic demand by end users is multimedia, in particular, video streaming accounts for over 53%. This demand has led to improved network infrastructures and computing architectures to meet the challenges of delivering these multimedia services while maintaining an adequate quality of experience. Focusing on the preparation and adequacy of multimedia content for broadcasting, Cloud and Edge Computing infrastructures have been and will be crucial to offer high and ultra-high definition multimedia content in live, real-time, or video-on-demand scenarios. For these reasons, this review paper presents a detailed study of research papers related to encoding and transcoding techniques in cloud computing environments. It begins by discussing the evolution of streaming and the importance of the encoding process, with a focus on the latest streaming methods and codecs. Then, it examines the role of cloud systems in multimedia environments and provides details on the cloud infrastructure for media scenarios. After doing a systematic literature review, we have been able to find 49 valid papers that meet the requirements specified in the research questions. Each paper has been analyzed and classified according to several criteria, besides to inspect their relevance. To conclude this review, we have identified and elaborated on several challenges and open research issues associated with the development of video codecs optimized for diverse factors within both cloud and edge architectures. Additionally, we have discussed emerging challenges in designing new cloud/edge architectures aimed at more efficient delivery of media traffic. This involves investigating ways to improve the overall performance, reliability, and resource utilization of architectures that support the transmission of multimedia content over both cloud and edge computing environments ensuring a good quality of experience for the final user

    QoS-aware Resource Allocation for Video Transcoding in Clouds

    Get PDF
    As the “biggest big data”, video data streaming in the network contributes the largest portion of global traffic nowadays and in future. Due to heterogeneous mobile devices, networks and user preferences, the demands of transcoding source videos into different versions have been increased significantly. However, video transcoding is a time-consuming task and how to guarantee quality-of-service (QoS) for large video data is very challenging, particularly for those real-time applications which hold strict delay requirement such as live TV. In this paper, we propose a cloud-based online video transcoding system (COVT) aiming to offer economical and QoS guaranteed solution for online large-volume video transcoding. COVT utilizes performance profiling technique to obtain the different performance of transcoding tasks in different infrastructures. Based on the profiles, we model the cloud-based transcoding system as a queue and derive the QoS values of the system based on queuing theory. With the analytically derived relationship between QoS values and the number of CPU cores required for transcoding workloads, COVT is able to solve the optimization problem and obtain the minimum resource reservation for specific QoS constraints. A task scheduling algorithm is further developed to dynamically adjust the resource reservation and schedule the tasks so as to guarantee the QoS in runtime. We implement a prototype system of COVT and experimentally study the performance on real-world workloads. Experimental results show that COVT effectively provisions minimum number of resources for predefined QoS. To validate the effectiveness of our proposed method under large scale video data, we further perform simulation evaluation which again shows that COVT is capable to achieve economical and QoS-aware video transcoding in clou

    QoS-Aware Resource Allocation for Video Transcoding in Clouds

    No full text
    corecore