7,032 research outputs found

    Real-life performance of protocol combinations for wireless sensor networks

    Get PDF
    Wireless sensor networks today are used for many and diverse applications like nature monitoring, or process and wireless building automation. However, due to the limited access to large testbeds and the lack of benchmarking standards, the real-life evaluation of network protocols and their combinations remains mostly unaddressed in current literature. To shed further light upon this matter, this paper presents a thorough experimental performance analysis of six protocol combinations for TinyOS. During these protocol assessments, our research showed that the real-life performance often differs substantially from the expectations. Moreover, we found that combining protocols is far from trivial, as individual network protocols may perform very different in combination with other protocols. The results of our research emphasize the necessity of a flexible generic benchmarking framework, powerful enough to evaluate and compare network protocols and their combinations in different use cases

    Supporting protocol-independent adaptive QoS in wireless sensor networks

    Get PDF
    Next-generation wireless sensor networks will be used for many diverse applications in time-varying network/environment conditions and on heterogeneous sensor nodes. Although Quality of Service (QoS) has been ignored for a long time in the research on wireless sensor networks, it becomes inevitably important when we want to deliver an adequate service with minimal efforts under challenging network conditions. Until now, there exist no general-purpose QoS architectures for wireless sensor networks and the main QoS efforts were done in terms of individual protocol optimizations. In this paper we present a novel layerless QoS architecture that supports protocol-independent QoS and that can adapt itself to time-varying application, network and node conditions. We have implemented this QoS architecture in TinyOS on TmoteSky sensor nodes and we have shown that the system is able to support protocol-independent QoS in a real life office environment

    Overlay networks for smart grids

    Get PDF

    A Case for Peering of Content Delivery Networks

    Full text link
    The proliferation of Content Delivery Networks (CDN) reveals that existing content networks are owned and operated by individual companies. As a consequence, closed delivery networks are evolved which do not cooperate with other CDNs and in practice, islands of CDNs are formed. Moreover, the logical separation between contents and services in this context results in two content networking domains. But present trends in content networks and content networking capabilities give rise to the interest in interconnecting content networks. Finding ways for distinct content networks to coordinate and cooperate with other content networks is necessary for better overall service. In addition to that, meeting the QoS requirements of users according to the negotiated Service Level Agreements between the user and the content network is a burning issue in this perspective. In this article, we present an open, scalable and Service-Oriented Architecture based system to assist the creation of open Content and Service Delivery Networks (CSDN) that scale and support sharing of resources with other CSDNs.Comment: Short Article (Submitted in DS Online as Work in Progress
    • 

    corecore