11,698 research outputs found

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Energy-efficient adaptive wireless network design

    Get PDF
    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations are necessary to achieve energy efficiency and an acceptable quality of service. The paper provides a review of ideas and techniques relevant to the design of an energy efficient adaptive wireless networ

    Adaptive Quality Of Service Call Admission Control With User Mobility Prediction For Multimedia Traffic Over Wireless Networks

    Get PDF
    Multimedia traffic is expected to be supported in the next generation wireless networks. As in wireline networks, the wireless network must also be capable of providing guaranteed quality of service (QoS) over the lifetime of mobile connections. Some challenging problems that appear in multimedia wireless networks, such as user mobility and shortage of bandwidth, influence the QoS provisioning for the users. In this thesis, we propose a new framework called Adaptive quality of service (AdQoS) to guarantee the QoS of multimedia traffic. The objectives that AdQoS framework tries to accomplish are minimum new call blocking and handoff dropping rates. The key feature of this framework is the bandwidth reallocation scheme. This scheme is developed to control the bandwidth operation of ongoing connections when the system is overloaded. The other key feature is the bandwidth reservation scheme incorporating a user mobility prediction to manage the QoS of the networks. Based on the mobility prediction, bandwidth is reserved to guarantee the uninterrupted hand off process. A comparison between existing user mobility prediction and the proposed scheme is also presented. An integrated system, which combines the Bandwidth Allocation Level technique and the user mobility prediction, is also proposed. The proposed user mobility prediction algorithm integrates the Received Signal Strength (RSS) measurements for the mobile terminal's intra-cell movement and aggregate history of mobile terminals for inter-cell movement. When compared with the conventional scheme proposed in the literature, the simulation results show that our proposed scheme reduces the new call blocking probabilities, the handoff dropping probabilities and reduces significantly the probability of terminating calls while still maintaining efficient bandwidth usage

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC
    • …
    corecore