7 research outputs found

    Simultaneous Bidirectional Link Selection in Full Duplex MIMO Systems

    Full text link
    In this paper, we consider a point to point full duplex (FD) MIMO communication system. We assume that each node is equipped with an arbitrary number of antennas which can be used for transmission or reception. With FD radios, bidirectional information exchange between two nodes can be achieved at the same time. In this paper we design bidirectional link selection schemes by selecting a pair of transmit and receive antenna at both ends for communications in each direction to maximize the weighted sum rate or minimize the weighted sum symbol error rate (SER). The optimal selection schemes require exhaustive search, so they are highly complex. To tackle this problem, we propose a Serial-Max selection algorithm, which approaches the exhaustive search methods with much lower complexity. In the Serial-Max method, the antenna pairs with maximum "obtainable SINR" at both ends are selected in a two-step serial way. The performance of the proposed Serial-Max method is analyzed, and the closed-form expressions of the average weighted sum rate and the weighted sum SER are derived. The analysis is validated by simulations. Both analytical and simulation results show that as the number of antennas increases, the Serial-Max method approaches the performance of the exhaustive-search schemes in terms of sum rate and sum SER

    Analyzing a full-duplex cellular system

    Full text link
    Abstract—Recent progress in single channel full-duplex (SC-FD) radio design [1]–[4] has attracted the attention of many researchers. A SC-FD transceiver is capable of transmitting and receiving on the same frequency at the same time, which will have a great impact on the design and performance of current wireless networks that are based on half duplex designs. This paper analyzes the effects of adopting SC-FD enabled base stations in a cellular system with legacy mobile stations. We use a multi-cell analytical model based on stochastic geometry to derive the theoretical performance gain of such a system. To validate the performance using a realistic setting, we conduct extensive simulations for a multi-cell OFDMA system. Both sets of results show that a full-duplex design for a cellular system, while not quite doubling system capacity, does greatly increases capacity over traditional cellular systems. Our results show that the uplink, compared with the downlink, is more susceptible to the extra interference caused by using the same frequency in both directions. I

    Analog Imperfections in Wireless Full-Duplex Transceivers

    Get PDF
    Käytössä olevien taajuusalueiden ruuhkautumisen vuoksi langattoman tiedonsiirron spektritehokkuuden lisääminen on tullut yhä tärkeämmäksi. Vastauksena tähän, useat viimeaikaiset tutkimukset osoittavat, että on itse asiassa mahdollista lähettää ja vastaanottaa radiosignaaleja langattomasti käyttäen vain yhtä keskitaajuutta. Nämä niinkutsutut full-duplex lähetin/vastaanottimet voivat teoriassa jopa kaksinkertaistaa spektritehokkuuden, koska ne eivät tarvitse erillisiä taajuuskaistoja lähetetyille ja vastaanotetuille signaaleille. Haasteena tällaisessa tiedonsiirrossa on kuitenkin se, että lähetetty signaali on vastaanottimen näkökulmasta voimakas häiriölähde, sillä se kytkeytyy lähettimestä suoraan vastaanottimeen. Tämä itse-interferenssi on suurin käytännön este full-duplex lähetin/vastaanottimen toteutukselle, joten on erittäin tärkeää pystyä jollakin keinolla vaimentamaan sitä. Tässä työssä tutkitaan itse-interferenssin vaikutusta tyypilliseen full-duplex lähetin/vastaanottimeen, kun itse-interferenssiä vaimennetaan sekä analogisesti että digitaalisesti. Lisäksi työssä esitetään analogiselle vaimennukselle kaksi vaihtoehtoista toteutustapaa. Kaiken kaikkiaan, työn tuloksena saadaan tietoa full-duplex lähetin/ vastaanottimessa esiintyvien eri epäideaalisuuksien voimakkuuksista. Varsinainen analyysi perustuu yksinkertaistettuihin malleihin, joilla pyritään mallintamaan yksittäisten komponenttien synnyttämiä analogisia häiriöitä. Näiden mallien avulla johdetaan lausekkeet eri signaalikomponenttien tehoille, joilla saadaan laskettua lopullinen signaali-kohina-interferenssi suhde. Tämän lisäksi johdetuilla lausekkeilla lasketaan lukuisia esimerkkituloksia käyttäen todenmukaisia parametreja. Saadut tulokset osoittavat, että analogia-digitaalimuunnoksessa vaaditaan runsaasti bittejä, tai vaihtoehtoisesti, että itse-interferenssiä täytyy vaimentaa analogisesti huomattava määrä. Lisäksi havaittiin, että tietyt analogiset häiriöt, etenkin tehovahvistimen aiheuttama epälineaarinen vääristymä, sekä mahdollisesti myös vastaanottimen epälineaarisuus, täytyy ottaa huomioon vaimennettaessa itse-interferenssiä digitaalisesti. Saadut tulokset ovat yhtäpitäviä aaltomuotosimulaatioilla saatujen tulosten kanssa, mikä vahvistaa niiden luotettavuuden

    multimedia transmission over wireless networks: performance analysis and optimal resource allocation

    Get PDF
    In recent years, multimedia applications such as video telephony, teleconferencing, and video streaming, which are delay sensitive and bandwidth intensive, have started to account for a significant portion of the data traffic in wireless networks. Such multimedia applications require certain quality of service (QoS) guarantees in terms of delay, packet loss, buffer underflows and overflows, and received multimedia quality. It is also important to note that such requirements need to be satisfied in the presence of limited wireless resources, such as power and bandwidth. Therefore, it is critical to conduct a rigorous performance analysis of multimedia transmissions over wireless networks and identify efficient resource allocation strategies. Motivated by these considerations, in the first part of the thesis, performance of hierarchical modulation-based multimedia transmissions is analyzed. Unequal error protection (UEP) of data transmission using hierarchical quadrature amplitude modulation (HQAM) is considered in which high priority (HP) data is protected more than low priority (LP) data. In this setting, two different types of wireless networks are considered. Specifically, multimedia transmission over cognitive radio networks and device-to-device (D2D) cellular wireless networks is addressed. Closed-form bit error rate (BER) expressions are derived and optimal power control strategies are determined. Next, throughput and optimal resource allocation strategies are studied for multimedia transmission under delay QoS and energy efficiency (EE) constraints. A Quality-Rate (QR) distortion model is employed to measure the quality of received video in terms of peak signal-to-noise ratio (PSNR) as a function of video source rate. Effective capacity (EC) is used as the throughput metric under delay QoS constraints. In this analysis, four different wireless networks are taken into consideration: First, D2D underlaid wireless networks are addressed. Efficient transmission mode selection and resource allocation strategies are analyzed with the goal of maximizing the quality of the received video at the receiver in a frequency-division duplexed (FDD) cellular network with a pair of cellular users, one base station and a pair of D2D users under delay QoS and EE constraints. A full-duplex communication scenario with a pair of users and multiple subchannels in which users can have different delay requirements is addressed. Since the optimization problem is not concave or convex due to the presence of interference, optimal power allocation policies that maximize the weighted sum video quality subject to total transmission power level constraint are derived by using monotonic optimization theory. The optimal scheme is compared with two suboptimal strategies. A full-duplex communication scenario with multiple pairs of users in which different users have different delay requirements is addressed. EC is used as the throughput metric in the presence of statistical delay constraints since deterministic delay bounds are difficult to guarantee due to the time-varying nature of wireless fading channels. Optimal resource allocation strategies are determined under bandwidth, power and minimum video quality constraints again using the monotonic optimization framework. A broadcast scenario in which a single transmitter sends multimedia data to multiple receivers is considered. The optimal bandwidth allocation and the optimal power allocation/power control policies that maximize the sum video quality subject to total bandwidth and minimum EE constraints are derived. Five different resource allocation strategies are investigated, and the joint optimization of the bandwidth allocation and power control is shown to provide the best performance. Tradeoff between EE and video quality is also demonstrated. In the final part of the thesis, power control policies are investigated for streaming variable bit rate (VBR) video over wireless links. A deterministic traffic model for stored VBR video, taking into account the frame size, frame rate, and playout buffers is considered. Power control and the transmission mode selection with the goal of maximizing the sum transmission rate while avoiding buffer underflows and overflows under transmit power constraints is exploited in a D2D wireless network. Another system model involving a transmitter (e.g., a base station (BS)) that sends VBR video data to a mobile user equipped with a playout buffer is also adopted. In this setting, both offline and online power control policies are considered in order to minimize the transmission power without playout buffer underflows and overflows. Both dynamic programming and reinforcement learning based algorithms are developed
    corecore