1,275 research outputs found

    Towards critical event monitoring, detection and prediction for self-adaptive future Internet applications

    No full text
    The Future Internet (FI) will be composed of a multitude of diverse types of services that offer flexible, remote access to software features, content, computing resources, and middleware solutions through different cloud delivery models, such as IaaS, PaaS and SaaS. Ultimately, this means that loosely coupled Internet services will form a comprehensive base for developing value added applications in an agile way. Unlike traditional application development, which uses computing resources and software components under local administrative control, FI applications will thus strongly depend on third-party services. To maintain their quality of service, those applications therefore need to dynamically and autonomously adapt to an unprecedented level of changes that may occur during runtime. In this paper, we present our recent experiences on monitoring, detection, and prediction of critical events for both software services and multimedia applications. Based on these findings we introduce potential directions for future research on self-adaptive FI applications, bringing together those research directions

    Dynamic QoS/QoE-aware reliable service composition framework for edge intelligence

    Get PDF
    Edge intelligence has become popular recently since it brings smartness and copes with some shortcomings of conventional technologies such as cloud computing, Internet of Things (IoT), and centralized AI adoptions. However, although utilizing edge intelligence contributes to providing smart systems such as automated driving systems, smart cities, and connected healthcare systems, it is not free from limitations. There exist various challenges in integrating AI and edge computing, one of which is addressed in this paper. Our main focus is to handle the adoption of AI methods on resource-constrained edge devices. In this regard, we introduce the concept of Edge devices as a Service (EdaaS) and propose a quality of service (QoS) and quality of experience (QoE)-aware dynamic and reliable framework for AI subtasks composition. The proposed framework is evaluated utilizing three well-known meta-heuristics in terms of various metrics for a connected healthcare application scenario. The experimental results confirm the applicability of the proposed framework. Moreover, the results reveal that black widow optimization (BWO) can handle the issue more efficiently compared to particle swarm optimization (PSO) and simulated annealing (SA). The overall efficiency of BWO over PSO is 95%, and BWO outperforms SA with 100% efficiency. It means that BWO prevails SA and PSO in all and 95% of the experiments, respectively

    Cloud Service Selection System Approach based on QoS Model: A Systematic Review

    Get PDF
    The Internet of Things (IoT) has received a lot of interest from researchers recently. IoT is seen as a component of the Internet of Things, which will include billions of intelligent, talkative "things" in the coming decades. IoT is a diverse, multi-layer, wide-area network composed of a number of network links. The detection of services and on-demand supply are difficult in such networks, which are comprised of a variety of resource-limited devices. The growth of service computing-related fields will be aided by the development of new IoT services. Therefore, Cloud service composition provides significant services by integrating the single services. Because of the fast spread of cloud services and their different Quality of Service (QoS), identifying necessary tasks and putting together a service model that includes specific performance assurances has become a major technological problem that has caused widespread concern. Various strategies are used in the composition of services i.e., Clustering, Fuzzy, Deep Learning, Particle Swarm Optimization, Cuckoo Search Algorithm and so on. Researchers have made significant efforts in this field, and computational intelligence approaches are thought to be useful in tackling such challenges. Even though, no systematic research on this topic has been done with specific attention to computational intelligence. Therefore, this publication provides a thorough overview of QoS-aware web service composition, with QoS models and approaches to finding future aspects

    Internet of Things is a revolutionary approach for future technology enhancement: a review

    Get PDF
    Abstract Internet of Things (IoT) is a new paradigm that has changed the traditional way of living into a high tech life style. Smart city, smart homes, pollution control, energy saving, smart transportation, smart industries are such transformations due to IoT. A lot of crucial research studies and investigations have been done in order to enhance the technology through IoT. However, there are still a lot of challenges and issues that need to be addressed to achieve the full potential of IoT. These challenges and issues must be considered from various aspects of IoT such as applications, challenges, enabling technologies, social and environmental impacts etc. The main goal of this review article is to provide a detailed discussion from both technological and social perspective. The article discusses different challenges and key issues of IoT, architecture and important application domains. Also, the article bring into light the existing literature and illustrated their contribution in different aspects of IoT. Moreover, the importance of big data and its analysis with respect to IoT has been discussed. This article would help the readers and researcher to understand the IoT and its applicability to the real world

    Location-aware deep learning-based framework for optimizing cloud consumer quality of service-based service composition

    Get PDF
    The expanding propensity of organization users to utilize cloud services urges to deliver services in a service pool with a variety of functional and non-functional attributes from online service providers. brokers of cloud services must intense rivalry competing with one another to provide quality of service (QoS) enhancements. Such rivalry prompts a troublesome and muddled providing composite services on the cloud using a simple service selection and composition approach. Therefore, cloud composition is considered a non-deterministic polynomial (NP-hard) and economically motivated problem. Hence, developing a reliable economic model for composition is of tremendous interest and to have importance for the cloud consumer. This paper provides “A location-aware deep learning framework for improving the QoS-based service composition for cloud consumers”. The proposed framework is firstly reducing the dimensions of data. Secondly, it applies a combination of the deep learning long short-term memory network and particle swarm optimization algorithm additionally to considering the location parameter to correctly forecast the QoS provisioned values. Finally, it composes the ideal services need to reduce the customer cost function. The suggested framework's performance has been demonstrated using a real dataset, proving that it superior the current models in terms of prediction and composition accuracy

    An infrastructure service recommendation system for cloud applications with real-time QoS requirement constraints

    Get PDF
    The proliferation of cloud computing has revolutionized the hosting and delivery of Internet-based application services. However, with the constant launch of new cloud services and capabilities almost every month by both big (e.g., Amazon Web Service and Microsoft Azure) and small companies (e.g., Rackspace and Ninefold), decision makers (e.g., application developers and chief information officers) are likely to be overwhelmed by choices available. The decision-making problem is further complicated due to heterogeneous service configurations and application provisioning QoS constraints. To address this hard challenge, in our previous work, we developed a semiautomated, extensible, and ontology-based approach to infrastructure service discovery and selection only based on design-time constraints (e.g., the renting cost, the data center location, the service feature, etc.). In this paper, we extend our approach to include the real-time (run-time) QoS (the end-to-end message latency and the end-to-end message throughput) in the decision-making process. The hosting of next-generation applications in the domain of online interactive gaming, large-scale sensor analytics, and real-time mobile applications on cloud services necessitates the optimization of such real-time QoS constraints for meeting service-level agreements. To this end, we present a real-time QoS-aware multicriteria decision-making technique that builds over the well-known analytic hierarchy process method. The proposed technique is applicable to selecting Infrastructure as a Service (IaaS) cloud offers, and it allows users to define multiple design-time and real-time QoS constraints or requirements. These requirements are then matched against our knowledge base to compute the possible best fit combinations of cloud services at the IaaS layer. We conducted extensive experiments to prove the feasibility of our approach
    • …
    corecore