1,484 research outputs found

    QoS adaptation in multimedia multicast conference applications for e-learning services

    Get PDF
    The evolution of the World Wide Web (WWW) service has incorporated new distributed multimedia conference applications, powering a new generation of e-learning development, and allowing improved interactivity and pro- human relations. Groupware applications are increasingly representative in the Internet home applications market, however, the Quality of Service (QoS) provided by the network is still a limitation impairing their performance. Such applications have found in multicast technology an ally contributing for their efficient implementation and scalability. Additionally, consider QoS as design goal at application level becomes crucial for groupware development, enabling QoS proactivity to applications. The applications’ ability to adapt themselves dynamically according to the resources availability can be considered a quality factor. Tolerant real-time applications, such as videoconferences, are in the frontline to benefit from QoS adaptation. However, not all include adaptive technology able to provide both end-system and network quality awareness. Adaptation, in these cases, can be achieved by introducing a multiplatform middleware layer responsible for tutoring the applications' resources (enabling adjudication or limitation) based on the available processing and networking capabilities. Congregating these technological contributions, an adaptive platform has been developed integrating public domain multicast tools, applied to a web-based distance learning system. The system is user-centered (e-student), aiming at good pedagogical practices and proactive usability for multimedia and network resources. The services provided, including QoS adapted interactive multimedia multicast conferences (MMC), are fully integrated and transparent to end-users. QoS adaptation, when treated systematically in tolerant real-time applications, denotes advantages in group scalability and QoS sustainability in heterogeneous and unpredictable environments such as the Internet

    QoS adaptation in multimedia multicast conference applications for e-learning services

    Get PDF
    Tolerant real-time applications, such as video conferences, are in the frontline to benefit from QoS adaptation. However, not all include adaptive technology able to provide both end-system and network quality awareness. Adaptation, in these cases, can be achieved by introducing a multiplatform middleware layer responsible for tutoring the applications’ resources (enabling adjudication or limitation) based on the available processing and networking capabilities. Congregating these technological contributions, an adaptive platform has been developed integrating public domain multicast tools, applied to a Web-based distance learning system. The system is user-centered (estudent), aiming at good pedagogical practices and proactive usability for multimedia and networkresources. The services provided, including QoS adapted interactive multimedia multicast conferences (MMC), are fully integrated and transparent to end-users. QoS adaptation, when treated systematically in tolerant real-time applications, denotes advantages in group scalability and QoS sustainability in heterogeneous and unpredictable environments such as the Internet

    Using the Java Media Framework to build Adaptive Groupware Applications

    Get PDF
    Realtime audio and video conferencing has not yet been satisfactorily integrated into web-based groupware environments. Conferencing tools are at best only loosely linked to other parts of a shared working environment, and this is in part due to their implications for resource allocation and management. The Java Media Framework offers a promising means of redressing this situation. This paper describes an architecture for integrating the management of video and audio conferences into the resource allocation mechanism of an existing web-based groupware framework. The issue of adaptation is discussed and a means of initialising multimedia session parameters based on predicted QoS is described

    An adaptive e-Learning platform based on IP multicast technology

    Get PDF
    Comunicação apresentada na International Conference on Information and Communication Technologies in Education, Badajoz, 2002.A wide range of applications involving different types of media, with distinct quality of service and network resources requirements have been fostering the computer communications community in order to improve the service provided by the Internet. Besides the IETF recent proposals for introducing QoS in the Internet, multicast technology proposed by S.Deering assumes a major role in supporting group-oriented applications. This article describes the design, implementation and operation of an adaptive distance learning system based on IP multicast technology accessible through a Web browser. This system uses public domain multimedia multicast to build a system which adapts conveniently to the available network resources and to the hardware capabilities of the end-system. The system architecture includes an adaptive module based on Java applets and embedded Javascript, responsible for assessing the existing operating conditions, by collecting the client's system performance (e-student's host) and relevant group characteristics. The collected data is subsequently computed weighting parameters, such as the available bandwidth at the client side, the round-trip time between the client and the remote server, the client's current CPU load and free memory. The obtained result is used for proper multicast applications scheduling and parameterisation in a transparent way

    TV-Centric technologies to provide remote areas with two-way satellite broadband access

    Get PDF
    October 1-2, 2007, Rome, Italy TV-Centric Technologies To Provide Remote Areas With Two-Way Satellite Broadband Acces

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    A Framework for Controlling Quality of Sessions in Multimedia Systems

    Get PDF
    Collaborative multimedia systems demand overall session quality control beyond the level of quality of service (QoS) pertaining to individual connections in isolation of others. At every instant in time, the quality of the session depends on the actual QoS offered by the system to each of the application streams, as well as on the relative priorities of these streams according to the application semantics. We introduce a framework for achieving QoSess control and address the architectural issues involved in designing a QoSess control laver that realizes the proposed framework. In addition, we detail our contributions for two main components of the QoSess control layer. The first component is a scalable and robust feedback protocol, which allows for determining the worst case state among a group of receivers of a stream. This mechanism is used for controlling the transmission rates of multimedia sources in both cases of layered and single-rate multicast streams. The second component is a set of inter-stream adaptation algorithms that dynamically control the bandwidth shares of the streams belonging to a session. Additionally, in order to ensure stability and responsiveness in the inter-stream adaptation process, several measures are taken, including devising a domain rate control protocol. The performance of the proposed mechanisms is analyzed and their advantages are demonstrated by simulation and experimental results
    corecore