289 research outputs found

    Orchestrating datacenters and networks to facilitate the telecom cloud

    Get PDF
    In the Internet of services, information technology (IT) infrastructure providers play a critical role in making the services accessible to end-users. IT infrastructure providers host platforms and services in their datacenters (DCs). The cloud initiative has been accompanied by the introduction of new computing paradigms, such as Infrastructure as a Service (IaaS) and Software as a Service (SaaS), which have dramatically reduced the time and costs required to develop and deploy a service. However, transport networks become crucial to make services accessible to the user and to operate DCs. Transport networks are currently configured with big static fat pipes based on capacity over-provisioning aiming at guaranteeing traffic demand and other parameters committed in Service Level Agreement (SLA) contracts. Notwithstanding, such over-dimensioning adds high operational costs for DC operators and service providers. Therefore, new mechanisms to provide reconfiguration and adaptability of the transport network to reduce the amount of over-provisioned bandwidth are required. Although cloud-ready transport network architecture was introduced to handle the dynamic cloud and network interaction and Elastic Optical Networks (EONs) can facilitate elastic network operations, orchestration between the cloud and the interconnection network is eventually required to coordinate resources in both strata in a coherent manner. In addition, the explosion of Internet Protocol (IP)-based services requiring not only dynamic cloud and network interaction, but also additional service-specific SLA parameters and the expected benefits of Network Functions Virtualization (NFV), open the opportunity to telecom operators to exploit that cloud-ready transport network and their current infrastructure, to efficiently satisfy network requirements from the services. In the telecom cloud, a pay-per-use model can be offered to support services requiring resources from the transport network and its infrastructure. In this thesis, we study connectivity requirements from representative cloud-based services and explore connectivity models, architectures and orchestration schemes to satisfy them aiming at facilitating the telecom cloud. The main objective of this thesis is demonstrating, by means of analytical models and simulation, the viability of orchestrating DCs and networks to facilitate the telecom cloud. To achieve the main goal we first study the connectivity requirements for DC interconnection and services on a number of scenarios that require connectivity from the transport network. Specifically, we focus on studying DC federations, live-TV distribution, and 5G mobile networks. Next, we study different connectivity schemes, algorithms, and architectures aiming at satisfying those connectivity requirements. In particular, we study polling-based models for dynamic inter-DC connectivity and propose a novel notification-based connectivity scheme where inter-DC connectivity can be delegated to the network operator. Additionally, we explore virtual network topology provisioning models to support services that require service-specific SLA parameters on the telecom cloud. Finally, we focus on studying DC and network orchestration to fulfill simultaneously SLA contracts for a set of customers requiring connectivity from the transport network.En la Internet de los servicios, los proveedores de recursos relacionados con tecnologías de la información juegan un papel crítico haciéndolos accesibles a los usuarios como servicios. Dichos proveedores, hospedan plataformas y servicios en centros de datos. La oferta plataformas y servicios en la nube ha introducido nuevos paradigmas de computación tales como ofrecer la infraestructura como servicio, conocido como IaaS de sus siglas en inglés, y el software como servicio, SaaS. La disponibilidad de recursos en la nube, ha contribuido a la reducción de tiempos y costes para desarrollar y desplegar un servicio. Sin embargo, para permitir el acceso de los usuarios a los servicios así como para operar los centros de datos, las redes de transporte resultan imprescindibles. Actualmente, las redes de transporte están configuradas con conexiones estáticas y su capacidad sobredimensionada para garantizar la demanda de tráfico así como los distintos parámetros relacionados con el nivel de servicio acordado. No obstante, debido a que el exceso de capacidad en las conexiones se traduce en un elevado coste tanto para los operadores de los centros de datos como para los proveedores de servicios, son necesarios nuevos mecanismos que permitan adaptar y reconfigurar la red de forma eficiente de acuerdo a las nuevas necesidades de los servicios a los que dan soporte. A pesar de la introducción de arquitecturas que permiten la gestión de redes de transporte y su interacción con los servicios en la nube de forma dinámica, y de la irrupción de las redes ópticas elásticas, la orquestación entre la nube y la red es necesaria para coordinar de forma coherente los recursos en los distintos estratos. Además, la explosión de servicios basados el Protocolo de Internet, IP, que requieren tanto interacción dinámica con la red como parámetros particulares en los niveles de servicio además de los habituales, así como los beneficios que se esperan de la virtualización de funciones de red, representan una oportunidad para los operadores de red para explotar sus recursos y su infraestructura. La nube de operador permite ofrecer recursos del operador de red a los servicios, de forma similar a un sistema basado en pago por uso. En esta Tesis, se estudian requisitos de conectividad de servicios basados en la nube y se exploran modelos de conectividad, arquitecturas y modelos de orquestación que contribuyan a la realización de la nube de operador. El objetivo principal de esta Tesis es demostrar la viabilidad de la orquestación de centros de datos y redes para facilitar la nube de operador, mediante modelos analíticos y simulaciones. Con el fin de cumplir dicho objetivo, primero estudiamos los requisitos de conectividad para la interconexión de centros de datos y servicios en distintos escenarios que requieren conectividad en la red de transporte. En particular, nos centramos en el estudio de escenarios basados en federaciones de centros de datos, distribución de televisión en directo y la evolución de las redes móviles hacia 5G. A continuación, estudiamos distintos modelos de conectividad, algoritmos y arquitecturas para satisfacer los requisitos de conectividad. Estudiamos modelos de conectividad basados en sondeos para la interconexión de centros de datos y proponemos un modelo basado en notificaciones donde la gestión de la conectividad entre centros de datos se delega al operador de red. Estudiamos la provisión de redes virtuales para soportar en la nube de operador servicios que requieren parámetros específicos en los acuerdos de nivel de servicio además de los habituales. Finalmente, nos centramos en el estudio de la orquestación de centros de datos y redes con el objetivo de satisfacer de forma simultánea requisitos para distintos servicios.Postprint (published version

    New concepts for traffic, resource and mobility management in software-defined mobile networks

    Get PDF
    The evolution of mobile telecommunication networks is accompanied by new demands for the performance, portability, elasticity, and energy efficiency of network functions. Network Function Virtualization (NFV), Software Defined Networking (SDN), and cloud service technologies are claimed to be able to provide most of the capabilities. However, great leap forward will only be achieved if resource, traffic, and mobility management methods of mobile network services can efficiently utilize these technologies. This paper conceptualizes the future requirements of mobile networks and proposes new concepts and solutions in the form of Software-Defined Mobile Networks (SDMN) leveraging SDN, NFV and cloud technologies. We evaluate the proposed solutions through testbed implementations and simulations. The results reveal that our proposed SDMN enhancements supports heterogeneity in wireless networks with performance improvements through programmable interfaces and centralized control

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure

    A novel multipath-transmission supported software defined wireless network architecture

    Get PDF
    The inflexible management and operation of today\u27s wireless access networks cannot meet the increasingly growing specific requirements, such as high mobility and throughput, service differentiation, and high-level programmability. In this paper, we put forward a novel multipath-transmission supported software-defined wireless network architecture (MP-SDWN), with the aim of achieving seamless handover, throughput enhancement, and flow-level wireless transmission control as well as programmable interfaces. In particular, this research addresses the following issues: 1) for high mobility and throughput, multi-connection virtual access point is proposed to enable multiple transmission paths simultaneously over a set of access points for users and 2) wireless flow transmission rules and programmable interfaces are implemented into mac80211 subsystem to enable service differentiation and flow-level wireless transmission control. Moreover, the efficiency and flexibility of MP-SDWN are demonstrated in the performance evaluations conducted on a 802.11 based-testbed, and the experimental results show that compared to regular WiFi, our proposed MP-SDWN architecture achieves seamless handover and multifold throughput improvement, and supports flow-level wireless transmission control for different applications
    corecore