701 research outputs found

    Evaluation of HTTP/DASH Adaptation Algorithms on Vehicular Networks

    Full text link
    Video streaming currently accounts for the majority of Internet traffic. One factor that enables video streaming is HTTP Adaptive Streaming (HAS), that allows the users to stream video using a bit rate that closely matches the available bandwidth from the server to the client. MPEG Dynamic Adaptive Streaming over HTTP (DASH) is a widely used standard, that allows the clients to select the resolution to download based on their own estimations. The algorithm for determining the next segment in a DASH stream is not partof the standard, but it is an important factor in the resulting playback quality. Nowadays vehicles are increasingly equipped with mobile communication devices, and in-vehicle multimedia entertainment systems. In this paper, we evaluate the performance of various DASH adaptation algorithms over a vehicular network. We present detailed simulation results highlighting the advantages and disadvantages of various adaptation algorithms in delivering video content to vehicular users, and we show how the different adaptation algorithms perform in terms of throughput, playback interruption time, and number of interruptions

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    CLEVER: a cooperative and cross-layer approach to video streaming in HetNets

    Get PDF
    We investigate the problem of providing a video streaming service to mobile users in an heterogeneous cellular network composed of micro e-NodeBs (eNBs) and macro e-NodeBs (MeNBs). More in detail, we target a cross-layer dynamic allocation of the bandwidth resources available over a set of eNBs and one MeNB, with the goal of reducing the delay per chunk experienced by users. After optimally formulating the problem of minimizing the chunk delay, we detail the Cross LayEr Video stReaming (CLEVER) algorithm, to practically tackle it. CLEVER makes allocation decisions on the basis of information retrieved from the application layer aswell as from lower layers. Results, obtained over two representative case studies, show that CLEVER is able to limit the chunk delay, while also reducing the amount of bandwidth reserved for offloaded users on the MeNB, as well as the number of offloaded users. In addition, we show that CLEVER performs clearly better than two selected reference algorithms, while being very close to a best bound. Finally, we show that our solution is able to achieve high fairness indexes and good levels of Quality of Experience (QoE)

    SAP: Stall-aware pacing for improved DASH video experience in cellular networks

    Get PDF
    The dramatic growth of cellular video traffic represents a practical challenge for cellular network operators in providing a consistent streaming Quality of Experience (QoE) to their users. Satisfying this objective has so-far proved elusive, due to the inherent system complexities that degrade streaming performance, such as variability in both video bitrate and network conditions. In this paper, we present SAP as a DASH video traffic management solution that reduces playback stalls and seeks to maintain a consistent QoE for cellular users, even those with diverse channel conditions. SAP achieves this by leveraging both network and client state information to optimize the pacing of individual video flows. We extensively evaluate SAP performance using real video content and clients, operating over a simulated LTE network. We implement state-of-the-art client adaptation and traffic management strategies for direct comparison. Our results, using a heavily loaded base station, show that SAP reduces the number of stalls and the average stall duration per session by up to 95%. Additionally, SAP ensures that clients with good channel conditions do not dominate available wireless resources, evidenced by a reduction of up to 40% in the standard deviation of the QoE metric
    • …
    corecore