88,759 research outputs found

    Quantitative trait loci for bone traits segregating independently of those for growth in an F-2 broiler X layer cross

    Get PDF
    An F broiler-layer cross was phenotyped for 18 skeletal traits at 6, 7 and 9 weeks of age and genotyped with 120 microsatellite markers. Interval mapping identified 61 suggestive and significant QTL on 16 of the 25 linkage groups for 16 traits. Thirty-six additional QTL were identified when the assumption that QTL were fixed in the grandparent lines was relaxed. QTL with large effects on the lengths of the tarsometatarsus, tibia and femur, and the weights of the tibia and femur were identified on GGA4 between 217 and 249 cM. Six QTL for skeletal traits were identified that did not co-locate with genome wide significant QTL for body weight and two body weight QTL did not coincide with skeletal trait QTL. Significant evidence of imprinting was found in ten of the QTL and QTL x sex interactions were identified for 22 traits. Six alleles from the broiler line for weight- and size-related skeletal QTL were positive. Negative alleles for bone quality traits such as tibial dyschondroplasia, leg bowing and tibia twisting generally originated from the layer line suggesting that the allele inherited from the broiler is more protective than the allele originating from the layer

    Genetic analysis of safflower domestication.

    Get PDF
    BackgroundSafflower (Carthamus tinctorius L.) is an oilseed crop in the Compositae (a.k.a. Asteraceae) that is valued for its oils rich in unsaturated fatty acids. Here, we present an analysis of the genetic architecture of safflower domestication and compare our findings to those from sunflower (Helianthus annuus L.), an independently domesticated oilseed crop within the same family.We mapped quantitative trait loci (QTL) underlying 24 domestication-related traits in progeny from a cross between safflower and its wild progenitor, Carthamus palaestinus Eig. Also, we compared QTL positions in safflower against those that have been previously identified in cultivated x wild sunflower crosses to identify instances of colocalization.ResultsWe mapped 61 QTL, the vast majority of which (59) exhibited minor or moderate phenotypic effects. The two large-effect QTL corresponded to one each for flower color and leaf spininess. A total of 14 safflower QTL colocalized with previously reported sunflower QTL for the same traits. Of these, QTL for three traits (days to flower, achene length, and number of selfed seed) had cultivar alleles that conferred effects in the same direction in both species.ConclusionsAs has been observed in sunflower, and unlike many other crops, our results suggest that the genetics of safflower domestication is quite complex. Moreover, our comparative mapping results indicate that safflower and sunflower exhibit numerous instances of QTL colocalization, suggesting that parallel trait transitions during domestication may have been driven, at least in part, by parallel genotypic evolution at some of the same underlying genes

    Bayesian multi-QTL mapping for growth curve parameters

    Get PDF
    Background Identification of QTL affecting a phenotype which is measured multiple times on the same experimental unit is not a trivial task because the repeated measures are not independent and in most cases show a trend in time. A complicating factor is that in most cases the mean increases non-linear with time as well as the variance. A two- step approach was used to analyze a simulated data set containing 1000 individuals with 5 measurements each. First the measurements were summarized in latent variables and subsequently a genome wide analysis was performed of these latent variables to identify segregating QTL using a Bayesian algorithm. Results For each individual a logistic growth curve was fitted and three latent variables: asymptote (ASYM), inflection point (XMID) and scaling factor (SCAL) were estimated per individual. Applying an 'animal' model showed heritabilities of approximately 48% for ASYM and SCAL while the heritability for XMID was approximately 24%. The genome wide scan revealed four QTLs affecting ASYM, one QTL affecting XMID and four QTLs affecting SCAL. The size of the QTL differed. QTL with a larger effect could be more precisely located compared to QTL with small effect. The locations of the QTLs for separate parameters were very close in some cases and probably caused the genetic correlation observed between ASYM and XMID and SCAL respectively. None of the QTL appeared on chromosome five. Conclusions Repeated observations on individuals were affected by at least nine QTLs. For most QTL a precise location could be determined. The QTL for the inflection point (XMID) was difficult to pinpoint and might actually exist of two closely linked QTL on chromosome one

    Assessment of Five Chilling Tolerance Traits and GWAS Mapping in Rice Using the USDA Mini-Core Collection

    Get PDF
    Rice (Oryza sativa L.) is often exposed to cool temperatures during spring planting in temperate climates. A better understanding of genetic pathways regulating chilling tolerance will enable breeders to develop varieties with improved tolerance during germination and young seedling stages. To dissect chilling tolerance, five assays were developed; one assay for the germination stage, one assay for the germination and seedling stage, and three for the seedling stage. Based on these assays, five chilling tolerance indices were calculated and assessed using 202 O. sativa accessions from the Rice Mini-Core (RMC) collection. Significant differences between RMC accessions made the five indices suitable for genome-wide association study (GWAS) based quantitative trait loci (QTL) mapping. For young seedling stage indices, japonica and indica subspecies clustered into chilling tolerant and chilling sensitive accessions, respectively, while both subspecies had similar low temperature germinability distributions. Indica subspecies were shown to have chilling acclimation potential. GWAS mapping uncovered 48 QTL at 39 chromosome regions distributed across all 12 rice chromosomes. Interestingly, there was no overlap between the germination and seedling stage QTL. Also, 18 QTL and 32 QTL were in regions discovered in previously reported bi-parental and GWAS based QTL mapping studies, respectively. Two novel low temperature seedling survivability (LTSS)–QTL, qLTSS3-4 and qLTSS4-1, were not in a previously reported QTL region. QTL with strong effect alleles identified in this study will be useful for marker assisted breeding efforts to improve chilling tolerance in rice cultivars and enhance gene discovery for chilling tolerance

    Detection and Mapping of Quantitative Trait Loci that Determine Responsiveness

    Get PDF
    Exposure to 70% N2O evokes a robust antinociceptive effect in C57BL/6 (B6) but not in DBA/2 (D2) inbred mice. This study was conducted to identify quantitative trait loci (QTL) in the mouse genome that might determine responsiveness to N2O. Offspring from the F2 generation bred from B6 and D2 progenitors exhibited a broad range of responsiveness to N2O antinociception as determined by the acetic acid-induced abdominal constriction test. QTL analysis was then used to dissect this continuous trait distribution into component loci, and to map them to broad chromosomal regions. To this end, 24 spleens were collected from each of the following four groups: male and female F2 mice responding to 70% N2O in oxygen with 100% response (high-responders); and male and female F2 mice responding with 0% response (low-responders). Genomic DNA was extracted from the spleens and genotyped with simple sequence length polymorphism MapPairs markers. Findings were combined with findings from the earlier QTL analysis from BXD recombinant inbred mice [Brain Res 725 (1996) 23]. Combined results revealed two significant QTL that influence responsiveness to nitrous oxide on proximal chromosome 2 and distal chromosome 5, and one suggestive QTL on midchromosome 18. The chromosome 2 QTL was evident only in males. A significant interaction was found between a locus on chromosome 6 and another on chromosome 13 with a substantial effect on N2O antinociception

    Creation of a Computational Pipeline to Extract Genes from Quantitative Trait Loci for Diabetes and Obesity

    Get PDF
    Type 2 Diabetes is a disease of relative insulin deficiency resulting from a combination of insulin resistance and decreased beta-cell function. Over the past several years, over 60 genes have been identified for Type 2 Diabetes in human genome-wide association studies (GWAS). It is important to understand the genetics involved with Type 2 diabetes in order to improve treatment and understand underlying molecular mechanisms. Heterogeneous stock (HS) rats are derived from 8 inbred founder strains and are powerful tools for genetic studies because they provide a basis for high resolution mapping of quantitative trait loci (QTL) in a relatively short time period. By measuring diabetic traits in 1090 HS male rats and genotyping 10K single nucleotide polymorphisms (SNPs) within these rats, Dr. Solberg Woods\u27 lab conducted genetic analysis to identify 85 QTL for diabetes and adiposity traits. To identify candidate genes within these QTL, we propose creation of a bioinformatics pipeline that combines general gene information, information from the rat genome database including disease portals and Variant Visualizer as well as the Attie Diabetes Expression Database. My project has involved writing code to pull data from these databases to determine which genes within each QTL are potential candidate genes. I have scripted the code to analyze genes within a single QTL or multiple QTL simultaneously. The resulting output is a single excel file for each QTL, listing all genes that are found in the disease portals, all genes that have a highly conserved non-synonymous variant change and all genes that are differentially expressed in the Attie database. The program also highlights genes that are found in all three categories. After creating the pipeline, I ran the program for 85 QTL identified in my laboratory. The program identified 63 high priority candidate genes for future follow-up. This work has helped my laboratory rapidly identify candidate genes for type 2 diabetes and obesity. In the future, the code can be modified to identify candidate genes within QTL for any complex trait

    Genomic prediction and quantitative trait locus discovery in a cassava training population constructed from multiple breeding stages

    Get PDF
    Open Access Article; Published online: 11 Dec 2019Assembly of a training population (TP) is an important component of effective genomic selection‐based breeding programs. In this study, we examined the power of diverse germplasm assembled from two cassava (Manihot esculenta Crantz) breeding programs in Tanzania at different breeding stages to predict traits and discover quantitative trait loci (QTL). This is the first genomic selection and genome‐wide association study (GWAS) on Tanzanian cassava data. We detected QTL associated with cassava mosaic disease (CMD) resistance on chromosomes 12 and 16; QTL conferring resistance to cassava brown streak disease (CBSD) on chromosomes 9 and 11; and QTL on chromosomes 2, 3, 8, and 10 associated with resistance to CBSD for root necrosis. We detected a QTL on chromosome 4 and two QTL on chromosome 12 conferring dual resistance to CMD and CBSD. The use of clones in the same stage to construct TPs provided higher trait prediction accuracy than TPs with a mixture of clones from multiple breeding stages. Moreover, clones in the early breeding stage provided more reliable trait prediction accuracy and are better candidates for constructing a TP. Although larger TP sizes have been associated with improved accuracy, in this study, adding clones from Kibaha to those from Ukiriguru and vice versa did not improve the prediction accuracy of either population. Including the Ugandan TP in either population did not improve trait prediction accuracy. This study applied genomic prediction to understand the implications of constructing TP from clones at different breeding stages pooled from different locations on trait accuracy

    Multi-environment QTL mixed models for drought stress adaptation in wheat

    Get PDF
    Many quantitative trait loci (QTL) detection methods ignore QTL-by-environment interaction (QEI) and are limited in accommodation of error and environment-specific variance. This paper outlines a mixed model approach using a recombinant inbred spring wheat population grown in six drought stress trials. Genotype estimates for yield, anthesis date and height were calculated using the best design and spatial effects model for each trial. Parsimonious factor analytic models best captured the variance-covariance structure, including genetic correlations, among environments. The 1RS.1BL rye chromosome translocation (from one parent) which decreased progeny yield by 13.8 g m(-2) was explicitly included in the QTL model. Simple interval mapping (SIM) was used in a genome-wide scan for significant QTL, where QTL effects were fitted as fixed environment-specific effects. All significant environment-specific QTL were subsequently included in a multi-QTL model and evaluated for main and QEI effects with non-significant QEI effects being dropped. QTL effects (either consistent or environment-specific) included eight yield, four anthesis, and six height QTL. One yield QTL co-located (or was linked) to an anthesis QTL, while another co-located with a height QTL. In the final multi-QTL model, only one QTL for yield (6 g m(-2)) was consistent across environments (no QEI), while the remaining QTL had significant QEI effects (average size per environment of 5.1 g m(-2)). Compared to single trial analyses, the described framework allowed explicit modelling and detection of QEI effects and incorporation of additional classification information about genotypes
    corecore