
Received: 18 June 2019 Accepted: 4 November 2019 Published online: 25 February 2020

DOI: 10.1002/csc2.20003

Crop Science
O R I G I N A L R E S E A R C H A R T I C L E

Genomics, Molecular Genetics & Biotechnology

Genomic prediction and quantitative trait locus discovery
in a cassava training population constructed from multiple
breeding stages

Mohamed Somo1 Heneriko Kulembeka2 Kiddo Mtunda2 Emmanuel Mrema2

Kasele Salum2 Marnin D. Wolfe1 Ismail Y. Rabbi3 Chiedozie Egesi3

Robert Kawuki4 Alfred Ozimati4 Roberto Lozano1 Jean-Luc Jannink1,5

1Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA

2Tanzania Agricultural Research Institute, Kibaha and Mwanza, Tanzania

3International Institute for Tropical Agriculture, Ibadan, Oyo, Nigeria

4National Crops Resources Research Institute, Namulonge, Uganda

5USDA–ARS, Ithaca, NY, USA

Correspondence
Mohamed Somo, Department of Plant Breed-

ing and Genetics, Cornell University, Ithaca,

NY, USA.

Email: msomowork@gmail.com

Funding information
Next Generation Cassava Breeding

Project; Bill and Melinda. Gates Foun-

dation; Department for International

Development of the United Kingdom

Assigned to Associate Editor Timothy

Beissinger

Abstract
Assembly of a training population (TP) is an important component of effective

genomic selection-based breeding programs. In this study, we examined the power of

diverse germplasm assembled from two cassava (Manihot esculenta Crantz) breed-

ing programs in Tanzania at different breeding stages to predict traits and discover

quantitative trait loci (QTL). This is the first genomic selection and genome-wide

association study (GWAS) on Tanzanian cassava data. We detected QTL associated

with cassava mosaic disease (CMD) resistance on chromosomes 12 and 16; QTL con-

ferring resistance to cassava brown streak disease (CBSD) on chromosomes 9 and

11; and QTL on chromosomes 2, 3, 8, and 10 associated with resistance to CBSD

for root necrosis. We detected a QTL on chromosome 4 and two QTL on chromo-

some 12 conferring dual resistance to CMD and CBSD. The use of clones in the

same stage to construct TPs provided higher trait prediction accuracy than TPs with

a mixture of clones from multiple breeding stages. Moreover, clones in the early
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breeding stage provided more reliable trait prediction accuracy and are better can-

didates for constructing a TP. Although larger TP sizes have been associated with

improved accuracy, in this study, adding clones from Kibaha to those from Ukiriguru

and vice versa did not improve the prediction accuracy of either population. Includ-

ing the Ugandan TP in either population did not improve trait prediction accuracy.

This study applied genomic prediction to understand the implications of constructing

TP from clones at different breeding stages pooled from different locations on trait

accuracy.

1 INTRODUCTION

Cassava is an important source of dietary calories for mil-

lions of people in tropical regions (Howeler, Lutaladio, &

Thomas, 2013; Salvador, Steenkamp, McCrindle, & Ethel-

wyn, 2014). Because of cassava’s adaptation and resilience

to dry and marginal environments, it is likely to continue to

be a lead contributor to food security for many. Traditionally,

cassava breeders have used phenotypes for selection but this

strategy has not always generated adequate genetic gain for

yield, especially in Africa (Ceballos, Kulakow, & Hershey,

2012). Similarly, the use of marker-assisted selection for com-

plex traits in cassava has remained largely ineffective because

of multiple minor loci, which are difficult to detect and deploy

(Ceballos et al., 2012).

Genomic selection allows superior plants to be selected

earlier in the seedling stage before phenotyping is started;

these plants can then be used for crossing (Heffner, Sorrells,

& Jannink, 2009; Jannink, Lorenz & Iwata, 2010; Loren-

zana & Bernardo, 2009). In principle, the adoption of GS is

expected to increase the rate of genetic gain and also reduce

selection cycle time. For the case of clonal plants, the added

advantage is that once elite clones are identified, they are

genetically fixed and can thus immediately be advanced to

downstream evaluation for faster variety replacement. Recent

implementation of GS in three breeding programs in Africa

have improved trait prediction accuracy. Wolfe et al. (2017)

reported a prediction accuracy increase of 57% for CMD

in a Nigerian cassava population. Similarly, Kayondo et al.

(2018) reported improvements in prediction accuracy of 0.42

for both CBSD severity in leaves and roots in two Ugandan

cassava populations.

In principle, successful implementation of a GS program

hinges on several critical factors, one of which is how the

TP is constituted. Mindful of breeding objectives, breeders

can select individuals from the available diverse germplasm

and improved breeding lines, within and across breeding

stages to construct TPs. They could also construct a TP in

clones from different breeding programs or even clones from

different countries. Most early crop GS studies used geno-

types from the same breeding stages to form TPs. These indi-

viduals were either tested in replicated trials in multiple envi-

ronments or were part of larger historical phenotypic datasets

(Dawson et al., 2013; Ly et al., 2013; Rutkoski et al., 2015;

Storlie & Charmet, 2013).

Often, breeding programs transitioning to GS-based

approaches may not have access to sufficient diverse genetic

pools and adequate historical data to choose TP candi-

dates from. For the case of clonal crops, the inadequacy

of planting materials from potential candidates could fur-

ther reduce the number of genotypes available for selec-

tion. In GS breeding, large TP size is generally preferred

because it is associated with better trait prediction accu-

racy (Cericola et al., 2017; Zhong, Dekkers, Fernando, &

Jannink, 2009).

Recently, The Tanzania Agriculture Research Institute

(TARI) transitioned to a GS-based cassava breeding pipeline.

Traditionally, TARI has maintained two distinct cassava

breeding programs at Chambezi in Kibaha and Ukiriguru in

Mwanza, serving the Coastal and Lake Zone parts of the coun-

try, respectively. The two breeding programs evolved inde-

pendently because of restrictions on germplasm movement

between regions to curb the spread of CBSD. Although the

breeding objectives are quite similar between the two pro-

grams, cassava breeders at Kibaha largely selected for fresh

root yield, whereas those at Ukiriguru focused mainly on dry

matter content. This dichotomy of trait selection was largely

driven by the consumption patterns of the local communities

in the respective regions.

The TARI TPs were constructed from clones from dif-

ferent trial types. The Kibaha trials included clones in the

preliminary yield trial (PYTKIB) and advanced yield trial

(AYTKIB) selection stages, whereas those at Ukiriguru con-

sisted of clones in the clonal evaluation trial (CETUKG) and

the preliminary yield trial (PYTUKG). In a breeding pipeline,

clonal evaluation trial genotypes are minimally selected in

seedling nurseries before cloning, whereas those from pre-

liminary and advanced yield trials would have undergone one
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T A B L E 1 The trial structure for the materials used for the training population, including the number of individual clones in each of the three

replicates after sprouting

Clones per replicate Plot area (M2)
Trial Stage Location Replicates Replicate 1 Replicate 2 Replicate 3 Planted Harvested

n m2

CET1 CETa Ukiriguru 2 108 91 – 5 5

CET2 CET Ukiriguru 2 213 214 – 5 5

PYT1 PYT Ukiriguru 2 96 81 – 10 10

PYT1 PYT Kibaha 2 64 65 – 14 14

PYT2 PYT Kibaha 2 74 77 – 14 14

PYT3 PYT Kibaha 2 45 48 – 14 14

PYT4 PYT Kibaha 2 21 23 – 14 14

PYT5 PYT Kibaha 2 24 23 – 14 14

PYT6 PYT Kibaha 2 15 15 – 14 14

PYT7 PYT Kibaha 2 20 19 – 14 14

PYT8 PYT Kibaha 2 55 51 – 14 14

PYT9 PYT Kibaha 2 58 63 – 14 14

AYT1 AYT Kibaha 2 26 25 – 42 20

AYT2 AYT Kibaha 3 12 12 12 42 20

AYT3 AYT Kibaha 3 16 13 15 42 20

AYT4 AYT Kibaha 2 23 23 – 42 20

AYT5 AYT Kibaha 2 25 20 – 42 20

AYT6 AYT Kibaha 2 21 21 – 42 20

aCET, clonal evaluation trial; PYT, preliminary yield trial; AYT, advanced yield trial.

and two specific selection rounds, respectively. In the present

study, each breeding cycle represented several trials (Table 1).

Each trial had different plot sizes, replications, and plants per

plot. Additionally, there were no common checks for the trials

across the two programs. Because there were too few clones

in each trial to form a sizeable TP, clones from different trial

types, breeding stages, and locations were pooled together to

form TPs. The Ugandan TP was added to the clones from the

two TARI programs to evaluate whether their inclusion could

improve trait prediction accuracy. There is limited knowl-

edge about the implications of using cassava clones from

multiple trials, clones from multiple locations, and clones

from multiple breeding stages to construct TPs regarding

trait predictions. This study was therefore designed to: (a)

examine which combination of breeding materials could pro-

vide the best training set; (b) evaluate trait prediction accuracy

within and across breeding stages, locations, and combined

TARI datasets; (c) assess the impact on trait predictions of

adding Ugandan clones to clones from either program; and (d)

identify the loci associated with disease resistance, partic-

ularly to CMD, CBSD, and CBSD root necrosis in Tanza-

nian cassava. The findings of this study will guide breeders

in selecting the most suitable candidates as well as the best

source of TP candidates when initiating GS-assisted breed-

ing. We also expect the markers identified in this study will

be a valuable addition for marker-assisted selection breeding

in cassava.

2 MATERIALS AND METHODS

2.1 Germplasm and field design

A diverse panel of breeding lines from two independent breed-

ing programs was used to construct the TP. The panel com-

prised 432 and 408 clones from the Kibaha and Ukirig-

uru breeding programs, respectively. The Kibaha clones

were at the preliminary (PYTKIB) and advanced yield trial

(AYTKIB) breeding stages, whereas those from Ukiriguru

were at the clonal evaluation trial stage (CETUKG) and

the preliminary yield trial stage (PYTUKG). The Kibaha

clones were drawn from nine preliminary and six advanced

yield trials, whereas Ukiriguru clones consisted of two clonal

evaluation trial and one preliminary trial. Clones in each

trial type arose from different progenitors and, as such,

each trial in both programs had a unique set of individu-

als, a different number of replicates, and different plot sizes

(Table 1). An additional 402 clones from Uganda previ-

ously described by Wolfe et al. (2016) were included in

the study.
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For each trial set, clones were evaluated in a ran-

domized complete block design during the 2016–2017

cropping season at Kibaha (6.8138◦S, 38.6949◦E; 156 m

a.s.l.) and Ukiriguru (2.71666667◦S, 33.01666667◦E; 1194 m

a.s.l.). The Kibaha preliminary yield trials were laid out as

a two-row plot with 14 plants, whereas the advanced yield

trials were 42 plants planted in six-row plots. The clonal

evaluation plots at Ukiriguru consisted of a single-row of

five plants, whereas the preliminary yield trials were two-

row plots with 10 plants. At both locations, the clones were

spaced at 1 by 1 m. With exception of the two AYTKIB

trials, which were replicated three times, the rest of the tri-

als in both locations were replicated twice (Table 1). For

all Kibaha trials, ‘Kiroba’, ‘Mfaransa’, and ‘Mkuranga1’

were used as common checks, whereas ‘Mkombozi’, ‘Lwaki-

tangaza’, and ‘Liongokwimba’ were the checks in the Ukirig-

uru trials. For both locations, standard agronomic practices

under rainfed cropping were applied. All the field man-

agement and phenotyping took place between March 2016

and May 2017.

2.2 Phenotyping

Nine traits were evaluated for this study. Cassava mosaic dis-

ease severity, foliar CBSD severity, and cassava green mite

[Mononychellus tanajoa (Bondar)] severity were scored at 3,

6, and 9 mo after planting on a scale of 1 (No symptoms) to

5 (severe symptoms). For analysis we used the season-wide

mean severity [mean CMD severity (MCMDS), mean CBDS

severity (MCBSDS), and mean cassava green mite severity

(MCGMS)] for 3, 6, and 9 mo after planting. For CBSD root

necrosis severity (CBSDRS), necrotic symptoms on a scale

of 1 to 5 were scored 12 mo after planting in cross-sections

of roots (Hillocks & Thresh, 2000), where 1 = no necrosis

and 5 is >25% necrotic and severe root constriction. We then

used average the disease scores for each experimental plot

for analysis.

Root number (RTNO) is the number of fresh roots har-

vested per plot, which was used to calculate RTNO per

hectare. Root weight and shoot weight (SHTWT) were both

measured as kg per plot and then used to calculate below-

and aboveground yield in Mg ha–1. Harvest index (HI)

was the ratio between root weight and total biomass (root

weight +SHTWT) per unit of area. Dry matter (DM) was

expressed as a percentage of fresh root weight (FYLD), cal-

culated via the specific gravity method. The specific gravity

of each sample (i.e., the whole root, including the peel) was

determined from the weights in air and in water (Kawano,

Fukuda, & Cenpukdee, 1987). The experimental and pheno-

typic data of the Ugandan population are as described pre-

viously (Kayondo et al., 2018; Ozimati et al., 2018; Wolfe

et al., 2016). Eight variables were common to both the Ugan-

dan and TARI populations, except MCGMS, which is specific

to TARI.

2.3 Genotyping

Single nucleotide polymorphism (SNP) marker genotypes

were obtained via genotyping-by-sequencing (Elshire et al.,

2011). The markers were called using the TASSEL version

5.0 genotyping-by-sequencing pipeline version 2 (Glaubitz

et al., 2014) after aligning the resulting reads to the M.
esculenta version 6 assembly available from Phytozome at

http://phytozome.jgi.doe.gov/ (accessed 21 Jan. 2020). Geno-

type calls were accepted only when there was a minimum of

two reads; otherwise, the genotype was set to missing and

imputed downstream. The markers were initially converted

to a matrix of allele dosages, with REF/REF, REF/ALT,

ALT/ALT genotypes coded as −1, 0 and +1, respectively. The

genotyping-by-sequencing data were filtered so that clones

with >80% missing markers and markers with >60% missing

genotype calls were removed. Beagle version 4.1 was used for

imputation of the data (Browning & Browning, 2009). After

imputation we retained 121,246 bi-allelic SNP markers with

AR2 (Estimated Allelic r-squared) threshold higher than 0.3.

Of the imputed markers, 116,837 markers with minor allele

frequency higher than 0.01 were retained. These markers were

then used for genomic prediction. Similarly, a total of 88,434

markers were retained after filtering with minor allele fre-

quency threshold higher than at 0.05 and used for GWAS anal-

ysis. 37,776 markers common to both the Ugandan and TARI

populations were filtered for minor allele frequency (0.01) and

the resulting 36,847 markers were then used for downstream

joint analysis.

3 STATISTICAL ANALYSIS

3.1 Estimation of observed values

To estimate these observed values, we fitted a mixed linear

model across trial types and locations with the lme4 R pack-

age (Bates et al., 2015; Vazquez, Bates, Rosa, Gianola, &

Weigel, 2010). For trials within locations, we fitted the model:

𝑦 = 𝐗𝛃 + Zclone𝒖 + 𝐙𝐓𝐫𝐢𝐚𝐥(𝐓𝐫𝐢𝐚𝐥∶𝐑𝐞𝐩)𝑟 + 𝛆, (1)

where y represents the raw phenotypic observations, β
includes a fixed effect for the population mean and for plot-

basis traits (FYLD, RTNO, and SHTWT), and the proportion

of plants harvested per plot was included as a covariate with

the design matrix X. The vector u and the corresponding inci-

dence matrix𝐙𝐜𝐥𝐨𝐧𝐞 represent the random effect for the clones,

where 𝑢 ∼ N(0, 𝐈σ2
𝑢
) and I represents the identity matrix.

The incidence of replication was nested in trial and was

http://phytozome.jgi.doe.gov/
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represented by the matrix 𝐙𝐓𝐫𝐢𝐚𝐥 (𝐓𝐫𝐢𝐚𝐥.𝐑𝐞𝐩) and the random

effects vector such that r ∼ N(0, 𝐈σ2
𝑟
) and the residual ε was

considered to be distributed as ε ∼ N(0, 𝐈σ2ε).
The model for the combined analysis across locations was:

𝑦 = 𝐗β + 𝐙𝐜𝐥𝐨𝐧𝐞𝑢 + 𝐙𝐫𝐞𝐩(𝐋𝐨𝐜.𝐓𝐫𝐢𝐚𝐥.𝐑𝐞𝐩)𝑏 + 𝛆, (2)

where the fixed and clone effects combined across locations

were the same as those for each location described above.

Trial and replicate effects were nested in locations and incor-

porated as random with the incidence matrix Zrep and the

effects vector b ∼ N(0, 𝐈σ2
𝑏
). All the random effects in each

of the models are independent and identically distributed. For

both models described above, the best linear unbiased pre-

dictors (BLUPs) for the clones were extracted and used as

the observed values that were correlated with the genomic

estimated breeding values (GEBVs) to determine trait

prediction accuracy.

In the combined location model, our emphasis was on pre-

dicting new genetic materials from another breeding program.

Therefore, we considered the environmental effects to be nui-

sance parameters. We were not interested in location, trial, or

replicate effects per se; instead, we were interested in GEBVs.

We assumed that the three-way interaction of location, trial

and replicate would be sufficient to correct for these nuisance

terms. No main effects were required to be fitted, as they were

simply linear combinations of the interaction predictors.

We also considered the issue of heterogeneity in the

error variances for different trials across the two locations.

Although error variance estimates differed across trials,

those differences had little effect on the estimated BLUP

values.The correlation between BLUPs with and without het-

erogeneous error variance were between 0.92 and 0.96, except

for FYLD, which had reduced BLUP correlations (∼0.48;

data not shown). To overcome the challenges and complexity

of modeling the heterogeneity of error variances, particularly

for yield, we fitted the model for each trial type in each loca-

tion separately and then extracted BLUPs from each experi-

ment and used the combined BLUPs and correlated them with

the GEBVs to determine the prediction accuracy. For the rest

of the traits, because of the large number of trials (18), we felt

that fitting the error variance for each trial would result in too

many parameters to estimate, we used a simpler homogenous

error variance model.

3.2 Variance components, heritability, and
trait correlation

The variance components were extracted from the model

used for the trials within location. The model statement is as

described above. Accordingly, broad sense heritability (H2)

was then computed for each trial as:

𝑯2 =
𝛔2𝐜

𝛔2𝐜 + 𝛔2𝐞
, (3)

where 𝛔2
𝒄

is the clone variance and 𝛔2𝐞 is the residual variance.

The phenotypic and genotypic correlations between the

nine traits were obtained from combined data from the two

locations. We also assessed trait phenotypic correlations by

using data from each breeding stage in each program, namely

the Ukiriguru populations (CETUKG and PYTUKG) and the

Kibaha populations (PYTKIB and AYTKIB), to determine

the consistency of trait correlations across different breeding

stages. For the combined locations, we used raw plot data to

estimate phenotypic correlations, without accounting for the

experimental design. For estimating the genetic correlations,

we accounted for the trial, location, and replication effects, as

described above. We then extracted and used BLUPs to esti-

mate genetic correlations. The estimates were plotted (Fig-

ure 2) in R version 3.4.1 with the corrplot package (Wei,

2013). For all the cases, the correlation values were consid-

ered to be significantly different from zero at P ≤ 0.05.

3.3 Genomic prediction

To perform genomic prediction, we fitted separate genomic

BLUP models as 𝑦 = 𝐗β +𝑍𝑔 + 𝛆 within breeding stages,

across breeding stages, and across breeding programs. where

y is a vector of the raw phenotype, β is the vector of fixed

effects (which is different for different scenarios) with the

design matrix X, the vector g is the random effect represent-

ing the GEBV for each individual, Z is a design matrix linking

observations to genomic values, and ε is a vector of the residu-

als. For within-stage predictions, the fixed effect is the grand

mean, whereas the fixed effects for across-stage predictions

were the grand mean and trial. For cross-program predictions,

the fixed effects included trial and location. The GEBV was

obtained under the assumption that 𝒈 ∼ 𝑁(0, 𝑲σ2
𝑔
), where

the additive genetic variance and σ2
𝑔

K is the square, symmet-

ric genomic relationship matrix based on SNP markers. The

genomic relationship matrix was constructed with the func-

tion A.mat in the R package rrBLUP (Endelman, 2011), which

used VanRaden’s (2008) Method 1. The genomic BLUP pre-

dictions were made with the function emmreml in the R ver-

sion 3.1.0 package EMMREML (Akdemir & Godfrey, 2015).

3.4 Assessment of prediction accuracy

In order to assess prediction accuracy, we used 30 replicates

of fivefold cross-validation. For each replicate, we divided
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the population randomly into five equal and mutually exclu-

sive subsets or folds. We then trained the prediction model

on four of the five folds (training sets) to predict the fifth

(validation set). For scenarios where we used one location

to predict another location, our training and test sets were

fixed and were therefore not replicated. The following predic-

tion scenarios were explored in our analysis: (i) within breed-

ing stages in each location: CETUKG, PYTUKG, PYTKIB,

and AYTKIB; (ii) combined locations (Ukiriguru + Kibaha);

(iii) within locations: prediction of the Ukiriguru sets alone

(CETUKG + PYTUKG) and the Kibaha sets alone (PYTKIB

+ AYTKIB); and (iv) cross-location prediction: use of the

Ukiriguru set to predict the Kibaha set, use of the Kibaha set to

predict the Ukiriguru set, and use of the Ukiriguru + Kibaha

set to predict the Ukiriguru set and use of the Ukiriguru +
Kibaha set to predict the Kibaha set. We also used the Ukirig-

uru + Uganda set to predict the Ukiriguru set, the Kibaha +
Uganda set to predict the Kibaha set, and the Ukiriguru +
Kibaha + Uganda set to predict the Ukiriguru and Kibaha

sets. This was done to determine if adding Ugandan clones

to either TARI program would improve the trait prediction

accuracy. For Scenarios 3 and 4, we maintained a fixed test

set (20%) picked randomly from the population being pre-

dicted in each iteration. For each prediction, accuracy was

computed as the Pearson’s correlation coefficient between the

GEBV predicted for the test set and the corresponding esti-

mated observed breeding values or BLUPs. Correlation val-

ues were considered significantly different from zero at P

value ≤ 0.05.

3.5 Population structure

To visualize the population structure, principal compo-

nent analysis of the common markers in the three breed-

ing programs (Kibaha, Uganda, and Ukiriguru) was per-

formed. The prcomp function in R was used to generate the

principal components. The first two principal components

were then used for plotting to visualize structure between

the three populations (Kibaha, Ukiriguru and Uganda).

Thereafter the loadings (eigenvector coefficients) for all

the markers on 18 chromosomes on Principal Component

(PC) 1 and PC2 were assessed to determine the markers

contributing to the greatest variations in TARI alone and

the TARI and Ugandan clones combined in the respective

principal components.

3.6 Genome-wide association study

A GWAS was performed on different subsets of the TARI

accessions. The subsets included trial types (clonal eval-

uation, preliminary yield, and advanced yield), locations

(Kibaha and Ukiriguru), and four clusters based on the marker

kinship matrices of the individuals. We used these combined

datasets because we suspected that certain chunks of data

could provide better results than others. Clustering was con-

sidered because we thought it would be an objective way to

find the population structure. By conducting a GWAS within

each cluster, we were hoping to avoid population structure and

find better allele frequencies.

In implementing the GWAS, we used BLUPs extracted

from the linear mixed model described above as the phe-

notypes. For each trial, the GWAS was carried out with

the genome-wide complex trait analysis tool (Yang, Lee,

Goddard, & Visscher, 2011). This followed a leave-one-out

approach, in which the chromosome with the tested candidate

SNP markers was excluded from the genomic relationship cal-

culation. The linear mixed model in Equation (4) was fitted for

each case:

𝑦 = 𝑋𝛃 + 𝐠 + 𝛆 𝐰𝐢𝐭𝐡 𝐯𝐚𝐫 (𝐲) = 𝐕 = 𝐊σ2
𝑔
+ 𝐈σ2ε , (4)

where y is an n × 1 vector of phenotype (BLUPs) ,with

n being the sample size; 𝛃 is a vector of fixed effects

(genetic marker information); g is an n × 1 vector of the

total genetic effects of the individuals with 𝐠 ∼ 𝑁 (𝟎,𝐊𝛔𝟐𝐠);
K is the genetic relationship matrix among individuals, which

is the same as the symmetric genomic realized relation-

ship matrix based on SNP markers; I is an n × n iden-

tity matrix; and ɛ is a vector of the residual effects with

𝛆 ∼ 𝐍 (𝟎, 𝐈𝛔𝟐𝛆 ).
A Bonferroni threshold was applied to correct for multiple

testing for each dataset used for the GWAS. The cutoff was

computed as −log10(α ÷ t × n), where α is 0.05, which

is the standard significance threshold, t is the number of

different subsets of data, and n is the number of SNPs. In

this study, the Bonferroni correction significance cutoff

was −log10 (0.05 ÷ 15 × 88,434) = 7.42. We used the

marker-wise P-value of 0.001 as the threshold to declare

significant marker–trait associations and the P-value of

0.2 corrected for false discovery rate to select the highly

significant marker–trait associations. The QTL boundaries

were defined by a linkage disequilibrium (LD) pairwise cor-

relation coefficient of r2 ≥ 0.7 coupled with the marker–trait

association information. We chose the tagging marker for

each QTL by the criteria of the smallest marker-wise P-value.

Manhattan and quantile–quantile plots were generated by the

R package ggplots2 (Wickham, Chang, & Wickham, 2016),

with customization for joint Manhattan plus quantile–quantile

plot display through the R package ggpubr (Kassambara,

2018). We used the M. esculenta_305_v6.1 database avail-

able in Phytozome to report the presence of annotated

genes that are related to plant defense systems within the

QTL region.
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F I G U R E 1 Principal component analysis (PCA) plot of the Tanzania Agriculture Research Institute (TARI) clones alone (a) and the combined

TARI and Ugandan (UG) clones (b) based on a single nucleotide polymorphism (SNP( marker matrix and the loading values (eigenvector

coefficients) for each marker on Principal Component (PC)1 against marker positions on all cassava chromosomes for TARI alone (c) and the

combined TARI and Ugandan set (d). For the TARI PCA, 121K SNPs were used and for the combined PCA, we used 37K SNPs common to both the

TARI and Ugandan sets. For both cases, the marker loadings were based on common markers (37,000)

4 RESULTS AND DISCUSSION

4.1 Population structure

We performed principal component analysis to assess struc-

ture within and among the Ukiriguru, Kibaha, and Ugandan

populations (Figure 1). This is necessary to determine how

individuals from these programs are related to each other in

order to understand the effect of germplasm sharing between

Uganda and Tanzania. It will also be useful to understand

whether the existing restrictions on clone movement between

the Kibaha and Ukiriguru populations might have facilitated

population differentiation within Tanzanian germplasm. In

the combined data (Ukiriguru + Kibaha + Uganda), the

first and second principal components accounted for 11 and

5% of the genetic variation, respectively. In the TARI sets

(Kibaha+Ukiriguru), PC1 and PC2 explained 7 and 5% of the

variation, respectively. Some population stratification within

each breeding program was observed (Figure 1).

Three clusters of clones were clearly arrayed along PC1

(Figure 1b). The loadings of markers on PC1 (Figure 1d)

showed a strong effect of chromosome 1 on this component,

suggesting that the clusters are caused by the known intro-

gression from Manihot glaziovii Müll.Arg. on this chromo-

some (Bredeson et al., 2016). This clustering along PC1 has

been observed previously in Ugandan cassava (Ozimati et al.,

2019) and we suggest that it depends on the dosage of the

chromosome 1 introgression, either no, one, or two copies.

Interestingly, PC2 (Supplemental Figure S1) strongly sepa-

rated the Ukiriguru from Kibaha sets, whereast the Ugandan

accessions were intermediate between these two. When we

analyzed the TARI sets alone, differences between Ukirig-

uru and Kibaha aligned along PC1 (Figure 1a), whereas the

chromosome 1 introgression aligned along PC2 (Figure 1c,
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Supplemental Figure S1). This analysis may also provide

valuable information on the role of introgression in driv-

ing population stratification. Despite Tanzania being the pre-

sumed origin of chromosome introgressions in the 1930s,

(Fauquet, Fargette, & Munihor, 1990; Hahn et al., 1979,

1980), according to this analysis, this introgression may have

been subjected to more recombination events in Tanzanian

populations (Figure 1c,d).

The Ugandan population was constituted in 2011 by com-

bining progenitors sourced from CIAT, IITA, and Tanzania,

and a few clones from within Uganda (Kawuki, personal com-

munication, 2019). Because of the recent construction of the

Ugandan TP, it is possible that the Ugandan introgression is

newer than the Tanzanian ones, resulting in differentiation

between subpopulations with the introgression and the ones

without it. However, further investigation is needed to vali-

date these hypotheses.

4.2 Trait correlations

Trait phenotypic and genetic correlations were quite similar

(Figure 2; Supplemental Figure S2). Phenotypic and geno-

typic correlations of the yield traits were moderately positive,

except for DM. The highest correlation was between FYLD

and SHTWT, followed by RTNO and SHTWT, and RTNO

and FYLD, (r = 0.6, r = 0.5, and r = 0.4, respectively). These

values are only slightly lower than previous findings: Kundy,

Mkamilo, and Misangu (2014) reported a strong positive cor-

relation between RTNO and FYLD (r = 0.7) but fewer clones

were tested by these authors, which could have skewed their

findings. In addition, the effects associated with locations and

trial types in the present study might have contributed to the

observed deviations. Generally, the positive correlations of

FYLD, RTNO, and SHTWT could be exploited for simulta-

neous trait improvements. We also observed a slight positive

genetic correlation between MCMDS and MCBSDS (r = 0.3)

but a very low association between MCBSDS and CBSDRS,

which agrees with the findings in other studies (Ozimati et al.,

2019; Rwegasira & Rey, 2012). The positive relationship

between these two foliar diseases provides an opportunity to

increase resistance against both concurrently. Mean cassava

green mite severity showed weak negative correlations with

MCMDS, SHTWT, and FYLD (r = –0.3, –0.3, and –0.4,

respectively). The negative correlation between MCGMS

and FYLD corroborates the result of Chipeta et al. (2013)

(r = –0.53). Breeders should keep these negative associations

in mind and incorporate sources of resistance when breeding

for yield. Assessments of trait correlations in each breeding

stage showed similar patterns observed in combined datasets

to those across breeding stages. However, we also noticed

a slight improvement in some traits, although we think this

could just be noise in the data (Supplemental Figure S2).

4.3 Variance components and broad-sense
heritability estimates

Variance components and broad-sense heritability estimates

for each of the nine traits are shown in Table 2. Generally,

the Kibaha trials yielded the largest genetic variance esti-

mates for MCMDS, CBSDRS, FYLD, and SHTWT, whereas

the Ukiriguru trials had the largest estimates for MCBSDS

and RTNO. Conversely, both FYLD and SHTWT had the

largest residual estimates in the AYTKIB and Ukiriguru tri-

als, respectively. Errors associated with CBSDRS, MCGMS,

RTNO, HI, and DM in AYTKIB were lower than in other tri-

als. However, both genetic and error estimates for RTNO in

the Ukiriguru trials were higher than those in the Kibaha tri-

als. Additionally, HI and MCBSDS had similar error estimates

across all the trials.

Heritability estimates ranged between 0.06 and 0.91. On

the basis of the cassava heritability classifications, only

HI in AYTKIB, MCBSDS in PYTUKG, and MCMDS

in both AYTKIB and PYTUKG could be classified as

high (>0.50) (Bhateria, Sood, & Pathania, 2006). Other

researchers reported higher heritability for MCMDS, MCB-

SDS, and HI in different cassava populations (Adeniji, Odo,

& Ibrahim, 2011; Kanyondo et al., 2018; Wolfe et al., 2017).

The high heritability estimates for MCMDS and MCBSDS

could be associated with varying levels of resistance in Tan-

zanian accessions caused by specific responses to various

strains of CBSD viruses and cassava green mite severity. In

the Lake Zone, there is a high prevalence of African cas-
sava mosaic virus, Eastern African cassava mosaic virus,

the Ugandan variant of Cassava mosaic virus, CBSVD, and

the Ugandan variant of the CBSD virus. However, only

Eastern African cassava mosaic virus and the CBSD virus

are known to occur in the Eastern Zone, which includes

Kibaha (Jeremiah et al., 2015; Legg & Raya, 1998). Exten-

sive pathogen variation within and between the two regions

of Tanzania could have caused the variability detected in the

germplasm. Significant differences in HI have been reported

among cassava cultivars (Kawano, Daza, Amaya, Rios, &

Goncalves, 1978). There is intensive selection against clones

with heavy branching in early generations. Clones with

fewer branches are known to have low HI. It appears from

these data that the clones from AYTKIB trials were heavily

selected for low branching, resulting in higher broad-sense

heritability (0.80).

Cassava brown streak disease severity, SHTWT, FYLD,

and DM in the CETUKG trials and MCBSDS and DM in

the Kibaha trials all had medium heritability estimates. Sim-

ilar estimates were reported in other cassava populations

(Kayondo et al., 2018; Ozimati et al., 2019; Wolfe et al., 2017).

We observed lower FYLD heritability in AYTKIB than in any

other trials. We can only speculate that intensive selection for

disease resistance and DM in early breeding stages could have
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F I G U R E 2 Phenotypic (left) and genetic (right) correlations among nine traits in cassava in combined Tanzania Agriculture Research Institute

(TARI) data. Blue and red represent positive and negative correlations respectively. The strength of trait relationships is depicted by the intensity of

the color. Cells with correlation values that are not significant at P < 0.05 have been left blank

T A B L E 2 Heritability, genetic and residual variance components for four plot sizes

Plot sizea Variance component MCMDS MCBSDS CBSDRS MCGMS RTNO SHTWT HI FYLD DM
5 m2 (CETUKG) 𝛔2

G 0.042 0.103 0.097 0.009 21950 12.71 0.005 11.01 7.11

𝛔2
TR 0.000 0.002 0.000 0.184 9516 9.10 0.005 0.46 1.69

𝛔2
e 0.049 0.121 0.215 0.142 71924 28.66 0.020 25.12 15.20

H2 0.46 0.46 0.31 0.06 0.23 0.31 0.20 0.30 0.32

10 m2 (PYTUKG) 𝛔2
G 0.050 0.114 0.008 0.037 22059 0.215 0.003 1.80 3.72

𝛔2
TR 0.000 0.000 0.005 0.000 15718 4.155 0.003 0.06 2.67

𝛔2
e 0.005 0.097 0.129 0.131 77142 10.605 0.017 5.80 16.84

H2 0.91 0.54 0.06 0.22 0.22 0.02 0.15 0.24 0.18

14 m2 (PYTKIB) 𝛔2
G 0.349 0.077 0.042 0.029 13763 14.89 0.004 50.09 5.23

𝛔2
TR 0.026 0.018 0.03 0.013 9203 28.08 0.002 24.69 1.74

𝛔2
e 0.432 0.100 0.21 0.118 43911 105.48 0.018 129.21 12.28

H2 0.43 0.39 0.14 0.18 0.24 0.10 0.17 0.25 0.27

20 m2 (AYTKIB) 𝛔2
G 0.28 0.083 0.031 0.051 4760 36.00 0.004 59.84 2.0885

𝛔2
TR 0.04 0.020 0.001 0.036 6688 70.08 0.003 66.79 0.9732

𝛔2
e 0.30 0.122 0.121 0.117 55303 197.90 0.001 211.45 10.2526

H2 0.44 0.38 0.20 0.25 0.08 0.12 0.80 0.18 0.16

a𝛔2
G, genetic variance among clones; 𝛔2

TR, variance among replicates in trials; 𝛔2
e, residual error variance; H2, plot-based broad-sense heritability estimates;

CETUKG, clonal evaluation trial at Ukiriguru; PYTUKG, preliminary yield trial at Ukiriguru; PYTKIB, preliminary yield trial at Kibaha; AYTKIB, advanced yield

trial at Kibaha; MCMDS, mean cassava mosaic disease severity; MCBSDS, mean cassava brown streak disease severity; CBSDRS, cassava brown streak disease root

necrosis severity; MCGMS, mean cassava green mite severity; RTNO, root number; SHTWT, shoot weight; HI, harvest index; FYLD, fresh root yield; DM, dry matter.



SOMO ET AL. 905Crop Science

limited and reduced the amount of FYLD genetic variation

in advanced lines (AYTKIB). Therefore, we need to balance

between trait selection preference and genetic variation in the

breeding process.

For most traits, clonal evaluation trials with a smaller

plot size (5 m2) had lower error variance and better her-

itability than trials with medium and large plots (e.g. 14

and 20 m2). High trait genetic variance has been reported

in clonal evaluation trials of sugarcane (Saccharum spp.) at

Louisiana State University Agricultural Center but the heri-

tability estimates with different plot sizes were similar (Mil-

ligan, Balzarini, Gravois, & Bischoff, 2007). The substantial

increase in genetic variance and trait heritability in smaller

plots than larger plot sizes needs further investigations. This

will help establish the optimal plot sizes for cassava breed-

ing for better prediction accuracy. Generally, trait heritabil-

ity estimates varied across trials, similar to the findings of

Kayondo et al. (2018), Wolfe et al. (2017), and Ozimati et al.

(2019). Confounding effects (locations and trials), different

environmental conditions, trait selection priorities in each of

the TARI breeding programs, and differences in data collec-

tion between the two programs could have affected the heri-

tability estimates.

5 GENOMIC PREDICTION

5.1 Within-stage predictions

Within-stage prediction accuracy for all the traits in the

CETUKG, PYTUKG, PYTKIB, and AYTKIB sets were 0.23,

0.20, 0.15, and 0.20, respectively (Table 3). The within-stage

accuracy was lower than the accuracy from other cassava

populations for most traits except DM and FYLD (Wolfe

et al., 2017). In this study, the use of data from the CETUKG

stage significantly improved prediction accuracy for all traits

except MCMDS and CBSDRS compared with the PYTUKG,

PYTKIB, and AYTKIB datasets. Overall prediction accuracy

obtained from the cross-validations was higher for HI and

FYLD when individuals in CETUKG and PYTUKG were

used for model training. On the contrary, the two breeding

stages evaluated at Kibaha produced markedly lower predic-

tion accuracies for most traits except for MCGMS and DM.

Interestingly, there was consistent prediction of FYLD

(∼35%) in both CETUKG and PYTUKG. The stability in

yield prediction in these breeding cycles at Ukiriguru sug-

gests that breeders can opt to select candidates for the TP

from either cycle, particularly when yield is the trait of inter-

est. An added advantage of equal prediction in CETUKG and

PYTUKG is that clones can directly be transferred from the

clonal evaluation to advance yield trial stage for evaluation.

Skipping the preliminary yield trial stage could help acceler-

ate the varietal replacement process.

T A B L E 3 Summary of cross-validated prediction accuracy by

trait and breeding stage

Trait CETUKGa PYTUKG PYTKIB AYTKIB Mean
MCMDS 0.11ns 0.06ns 0.17ns 0.32ns 0.14

MCBSDS 0.26* 0.33ns 0.08ns 0.24ns 0.23

CBSDRS 0.26ns 0.10ns 0.09ns 0.10ns 0.14

MCGMS 0.22* 0.09ns 0.21ns 0.43* 0.24

RTNO 0.28** 0.27ns 0.16ns 0.03ns 0.19

SHTWT 0.22ns 0.03ns 0.12ns 0.08ns 0.11

HI 0.22* 0.38* 0.13ns 0.19ns 0.23

FYLD 0.36* 0.35* 0.10ns 0.09ns 0.23

DM 0.14ns 0.18ns 0.28* 0.43* 0.26

Mean 0.23 0.20 0.15 0.20 0.19

aCETUKG, clonal evaluation trial at Ukiriguru; PYTUKG, preliminary yield trial

at Ukiriguru; PYTKIB, preliminary yield trial at Kibaha; AYTKIB, advanced yield

trial at Kibaha; MCMDS, mean cassava mosaic disease severity; MCBSDS, mean

cassava brown streak disease severity; CBSDRS, cassava brown streak disease root

necrosis severity; MCGMS, mean cassava green mite severity; RTNO, root num-

ber; SHTWT, shoot weight; HI, harvest index; FYLD, fresh root yield; DM, dry

matter.
*Significant at the 0.05 probability level.
**significant at the 0.01 probability level; ns, nonsignificant prediction accuracy.

Dry matter prediction accuracy improved significantly by

53% when clones in the AYTKIB set were used for model

training rather than those in PYTKIB. Comparison between

breeding stages in the two locations showed high FYLD pre-

diction accuracy in CETUKG and high DM in AYTKIB. One

would have expected the opposite results because of the trait

selection preferences between the two locations as well as the

larger plot size associated with AYTs. We are not certain why

clones in the early generation evaluated in smaller plots had

higher yield than clones in advanced generations evaluated

in larger plots. The difference could be attributed to higher

genetic variation and higher heritability estimates for clonal

evaluation clones than for advanced yield trial clones.

We also observed that using clones from the same breed-

ing stage for TP gave higher prediction accuracy estimates

than clones aggregated from multiple breeding stages. Our

estimates agree with those found by Hofheinz, Borchardt,

Weissleder, and Frisch (2012) for data from two consecutive

breeding cycles of sugar beet (Beta vulgaris L.) and the study

of Michel et al. (2018) of GS using multiple breeding cycles

in bread wheat (Triticum aestivum L.). Ceballos et al. (2016)

recommends the use of phenotypic information from clones at

the advanced breeding stage during GS because of their “sta-

ble” genotypic performance. In this study, we observed that

phenotypic records of clones in the early breeding stage pre-

dicted the test set better for most traits than advanced ones.

We suggest that consideration should be given to within-stage

clones, particularly clones from early generations when form-

ing TPs. Additionally, CET clones are generally tested in

smaller plots because of the limited number of planting stakes.
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The use of smaller plots for trait evaluation can further help

reduce phenotyping costs. Additional investigations of differ-

ent cassava populations are needed to validate our results.

5.2 Within- and cross-location predictions

One location’s data can be used to predict performance in an

independent location, which can help accelerate the breed-

ing process. We evaluated cross-location predictions and com-

pared the trait prediction accuracy estimates with the within-

location prediction accuracy estimates. Except for MCGMS,

the cross-location predictions were generally low, averag-

ing between 0.10 and 0.14 when the Kibaha population was

used to predict the Ukiriguru set and vice versa, respectively

(Table 4). Mean cassava green mite severity was the highest

and most consistently predicted trait both within and between

locations. Adding the two populations together to increase

the TP size did not improve trait prediction accuracy. We

also noticed that the use of the Kibaha population to pre-

dict the Ukiriguru population reduced accuracy for CBSDRS,

RTNO, SHTWT, HI, and FYLD compared with the within-

Ukiriguru scenario. The unrelatedness of materials across

cycles, confounding effects (trials and locations), and vari-

able heritability across locations could have caused the low

accuracy. Perhaps the existing quarantine between the two

TARI programs associated with subtle population differen-

tiation (Figure 1) as well as the absence of common checks

between trials may have caused low trait prediction estimates

between locations.

Reduced common ancestors over time results in reduced

kinship, which reduces accuracy (de los Campos, Hickey,

Pong-Wong, Daetwyler, & Calus, 2013). Lorenz and Smith

(2015) reported a decrease in prediction accuracy when unre-

lated lines are added to the calibration set. Similarly, Song

et al. (2017) reported a decrease in prediction accuracy when

predicting yield across cycles compared with within cycles

in wheat. Our results are also in agreement with the findings

of Ly et al. (2013). They observed a decrease in prediction

accuracy across locations in cassava. Therefore, according to

this population, cross-location prediction may not be useful

for programs implementing GS. Although, in general, it would

be useful to implement GS across locations, the use of popu-

lations with structure and weak SNP–QTL linkage disequilib-

rium associations across populations could limit GS-assisted

breeding in cassava and other species. This limitation has also

been observed in livestock: Hayes, Bowman, Chamberlain,

and Goddard (2009) reported that pooling animals from dif-

ferent populations did not improve trait predictions because

of nonpersistent association between SNPs and QTL across

breeds (populations).

In our study, we did not find a consistent relationship

between heritability and prediction accuracy estimates across

breeding cycles. In fact, we observed the same accuracies

for FYLD in both UKGCET and UKGPYT. Other stud-

ies have reported a positive relationship between heritability

and prediction accuracy across breeding cycles. For exam-

ple, Sallam et al. (2015) reported higher prediction accu-

racy for Fusarium head blight resistance than for yield in

cross-breeding cycles.

This is because highly heritable traits have a less complex

genetic architecture and are therefore considered to be sta-

ble across multiple cycles. Combs and Bernardo (2013) and

Daetwyler et al. (2010) have both attributed the positive rela-

tionship between heritability and accuracy to the preserved

haplotype structures and relatedness across breeding cycles.

5.3 Across-program prediction

The Ukiriguru population had slightly better prediction accu-

racy for most traits than the Kibaha set (Table 5). We added

the Ukiriguru clones to the Kibaha clones and vice versa

and predicted a fixed number (20%) of Kibaha or Ukirig-

uru accessions to determine whether including these clones

could improve trait prediction. Adding Ukiriguru clones to

the Kibaha training set did not improve prediction accuracy

for most traits. On the other hand, adding the Kibaha clones

to the Ukiriguru training set reduced the prediction accuracy

for most traits. This effect was more severe on FYLD than

any other trait (a change from r = 0.30 to r = 0.08). Similarly,

adding the Ugandan clones to either the Kibaha or Ukirig-

uru clones did not improve prediction accuracy for either pro-

gram. However, use of the Ukiriguru + Uganda set to predict

the Ukiriguru test set slightly improved the results compared

with use of the Kibaha + Uganda set to predict the Kibaha

test set.

Furthermore, we used the Ukiriguru + Kibaha + Uganda

set to predict the Ukiriguru and Kibaha sets to determine if

adding Ugandan clones to TARI clones would improve trait

prediction accuracy. There was no improvement in trait pre-

diction. In fact, there were decreases for CBSD severity in

leaves, CBSDRS, and SHTWT (from r = 0.16 to 0.07, from

r = 0.14 to 0.07, and r = 0.16 to 0.08, respectively) when

the Ukiriguru + Kibaha + Uganda set was used to predict

the Kibaha set. We observed similar decreases for CBSDRS,

SHTWT, and FYLD (from r = 0.23 to 0.15, from r = 0.20 to

0.14, and from r= 0.30 to 0.26, respectively) when the Ukirig-

uru + Kibaha + Uganda set was used to predict the Ukiriguru

set. Decreases in accuracy as result of combining unrelated

populations have been reported in other crops. For example,

Lorenz and Smith (2015) reported low prediction accuracy

estimates when they combined a population from a North

Dakota state University barley (Hordeum vulgare L.) program

and a second population from a University of Minnesota bar-

ley breeding program to form a TP. Other researchers have
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T A B L E 4 Average trait prediction accuracy for cross-location and combined Tanzania Agriculture Research Institute (TARI) populations

Trait TARI Ukiriguru to Ukirigurua Kibaha to Ukiriguru Kibaha to Kibaha Ukiriguru to Kibaha
MCMDSb 0.15* 0.09 0.02ns 0.18* 0.06ns

MCBSDS 0.23* 0.25 0.11* 0.08ns 0.09ns

CBSDRS 0.09* 0.21 0.16* 0.05ns 0.10*

MCGMS 0.25* 0.22 0.23* 0.23* 0.25*

RTNO 0.16* 0.24 0.08ns 0.09ns 0.11*

SHTWT 0.11ns 0.22 0.19ns 0.09ns 0.01ns

HI 0.16ns 0.18 0.15* 0.11* 0.12*

FYLD 0.18* 0.29 0.13* 0.08ns 0.05ns

DM 0.23* 0.13 0.16* 0.28* 0.24*

Mean 0.17 0.20 0.14 0.13 0.10

aUkiriguru to Ukiriguru prediction accuracy indicates the accuracy of using the Ukiriguru training (sub)populations to predict the Ukiriguru test sets; similar notation is

used for the other predictions.
bMCMDS, mean cassava mosaic disease severity; MCBSDS, mean cassava brown streak disease severity; CBSDRS, cassava brown streak disease root necrosis severity;

MCGMS, mean cassava green mite severity; RTNO, root number; SHTWT, shoot weight; HI, harvest index; FYLD, fresh root yield; DM, dry matter.
*Significant at the 0.05 probability level; ns, nonsignificant prediction accuracy.

T A B L E 5 Summary of cross-validated prediction accuracy by trait and across programs

Scenario MCMDSa MCBSDS CBSDRS RTNO SHTWT HI FYLD DM Mean
Kibaha to Kibahab 0.19ns 0.16ns 0.14ns 0.16ns 0.15ns 0.12ns 0.09ns 0.29* 0.16

Ukiriguru to Ukiriguru 0.01ns 0.28* 0.23* 0.26* 0.20* 0.17ns 0.30* 0.13ns 0.20

Kibaha + Ukiriguru to Kibaha 0.17ns 0.14ns 0.14ns 0.16ns 0.14ns 0.14ns 0.09ns 0.30* 0.16

Ukiriguru + Kibaha to Ukiriguru 0.01ns 0.28* 0.18ns 0.27* 0.14ns 0.19* 0.08ns 0.15ns 0.16

Kibaha + Uganda to Kibaha 0.20* 0.07ns 0.06ns 0.14ns 0.08ns 0.15ns 0.08ns 0.27* 0.13

Ukiriguru + Uganda to Ukiriguru 0.02ns 0.30* 0.15ns 0.24* 0.14ns 0.19* 0.26* 0.15ns 0.18

Kibaha + Ukiriguru + Uganda to Kibaha 0.17ns 0.11ns 0.06ns 0.18ns 0.10ns 0.15ns 0.08ns 0.28* 0.14

Ukiriguru + Kibaha + Uganda to Ukiriguru −0.01ns 0.31* 0.17* 0.26* 0.12ns 0.20* 0.11ns 0.17ns 0.17

Mean 0.09 0.21 0.14 0.21 0.13 0.16 0.14 0.22 0.16

aMCMDS, mean cassava mosaic disease severity; MCBSDS, mean cassava brown streak disease severity; CBSDRS, cassava brown streak disease root necrosis severity;

MCGMS, mean cassava green mite severity; RTNO, root number; SHTWT, shoot weight; HI, harvest index; FYLD, fresh root yield; DM, dry matter.
bKibaha to Kibaha prediction accuracy indicates the accuracy of the Kibaha training (sub)populations to predict the Kibaha test sets; similar notation is used for the other

predictions.

also reported low accuracies in cross-population predictions

(Crossa et al., 2010; Endelman, 2011; Wolfe et al., 2017). Our

results and evidence from other studies suggests that breeders

can achieve better and more reliable prediction accuracy esti-

mates with smaller populations with closely related genotypes

than a large population with unrelated individuals. Population

structure, different environmental conditions, different exper-

imental designs, the direction of trait selection in each of the

TARI breeding programs, and variations in heritability could

have impacted the accuracy estimates. According to published

results, the Ugandan TP had slightly higher accuracy for most

traits than the TARI sets (Ozimati et al., 2018; Wolfe et al.,

2017). More locations and replication of clones across envi-

ronments could have improved their accuracies. The poor pre-

diction results for cross-program prediction reported in our

study will make it harder for breeders to use training data from

different locations, breeding programs, and countries.

5.4 Genetic architecture of disease resistance

Genetic associations with MCMDS were distributed across

all chromosomes except 4, 5 6, 8, 11, 13, and 18 (Figure 3,

Table 6, and Supplemental File S1). A previous GWAS for

CMD resistance revealed the CMD2 locus on chromosome

12 in other cassava populations (Wolfe et al., 2016). The

SNPs S12_5529819 and S12_11351823 delimit this QTL

region (6.3–8.7 Mbp). S12_7270219 was the most significant

marker tagging the QTL in all the TARI subpopulations and

accounted for 14 to 37% of the phenotypic variance explained

(PVE). This result validates the presence of the previously

reported CMD2 locus. In addition to the CMD2 locus, we also

detected another major CMD QTL (QTL-cmds16-1) on chro-

mosome 16 tagged by the marker S16_421670 when we used

the PYTUKG population. This region accounted for 87% of

PVE (Figure 3, Table 6, and Supplemental File S1). There
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F I G U R E 3 The Manhattan (a) and quantile–quantile (QQ) (b) plots from mixed linear models summarizing the genome-wide association

results for three significant traits in all subsets of the combined Tanzania Agriculture Research Institute (TARI) population. The quantile–quantile

plots demonstrate the differences among various population structure controls. CET, clonal evaluation trial; PYT, preliminary yield trial;

AYT, advanced yield trial; K3 & K4, clusters 3 and 4 generated by the kinship relationship matrix. The horizontal solid line indicates the

genome-wide Bonferroni significance threshold (−log10 (P-value) = 7.27), the dashed line indicates the false discovery rate (FDR) Part1 and the

dotted line indicates FDR Part 2. Additional details of the significant markers, P-values, and positive FDR values are given in Supplemental File S1

(Sheet 1). Additional plots for all the other traits below the threshold are in Supplemental Figure S3

are no known CMD resistance genes in this region. How-

ever, the genes Manes.16G036200.1, Manes.16G036300.1,

and Manes.16G036400.1 have been annotated in this region

and are known to encode pentatricopeptide repeats. These

genes are positively expressed when plants are under attack

from pathogens (Park et al., 2014).

A QTL on chromosome 4 (QTL-cbsd4|cmd-1) and two on

chromosome 12 (QTL-cbsd12|cmd-1 and QTL-cbsd12|cmd-
2) showed significant associations with both MCBSDS and

MCMDS resistance (Figure 3, Table 6, and Supplemental

File S1). The marker S12_7929439 tagging the cbsd12|cmd-
2 QTL accounted for 8% of PVE for MCMDS and 33%

of MCBSDS in several subsets of the TARI population.

In the same region, a single marker (S12_929320) was

found to be associated with a MCMDS and MCBSDS resis-

tance QTL (QTL-cbsd12|cmd-1) in the PYTKIB dataset

and accounted for 37 and 8% and PVE, respectively. QTL-
cbsd4|cmd-1, tagged by marker S4_24670203, was detected

in the K4_cluster1 dataset and explained 14% of PVE.

The Manes.04G113900.1 gene occurs in the marker region

detected on chromosome 4. This gene is known to encode for

phospholipased α and activates plant responses to pathogen

attacks (De Torres et al., 2002). There are no known anno-

tated genes in the region of QTL-cbsd12|cmd-1 and QTL-
cbsd12|cmd-2. Further studies need to be conducted to con-

firm the presence of QTL conferring resistance to both CMD

and CBSD on chromosomes 4 and 12.

On chromosomes 9 and 11, QTL-cbsd9-1 and QTL-cbsd11-
2, tagged by SNP S9_10707044 and S11_22942418, were

associated with responses to MCBSDS in the Ukiriguru
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T A B L E 6 Significant markers associated with mean cassava mosaic disease severity (MCMDS), MCBSDS (mean cassava brown streak

disease severity), and cassava brown streak disease root necrosis severity (CBSDRS) resistance detected in the Tanzania Agriculture Research

Institute (TARI) training population

Region Log10 PVE
QTL Trait Chr. Mbs Tag SNP Position Allele Freq b P-value % Population
QTL-cbsdrs2-1 CBSDRS 2 9.15–9.16 S2_9258334 9,258,334 A/C 0.15 0.11 6.843 8 Ukiriguru

QTL-cbsdrs3-1 CBSDRS 3 10.16 S3_10165675 10,165,675 A/G 0.05 0.20 6.137 3 AYTKIB

QTL-cbsdrs8-1 CBSDRS 8 1.74 S8_17363721 17,363,721 A/G 0.05 0.21 6.35 32 AYTKIB

QTL-cbsdrs10-1 CBSDRS 10 0.16 S10_160775 160,775 G/A 0.08 0.16 5.24 11 CETUKG

QTL-cbsd9-1 MCBSDS 9 10.71 S9_10707044 10,707,044 G/A 0.5 0.57 6.457 9 PYTKIB

QTL-cbsd11-1 MCBSDS 11 22.88–22.94 S11_22942418 22,942,418 A/G 0.45 0.08 6.01 5 Ukiriguru

QTL-cmds16-1 MCMDS 16 0.42 S16_421670 421,670 T/C 0.49 1.86 9.844 87 PYTUKG

QTL-cmds12-1 MCMDS 12 6.3–8.7 S12_7270219 7,270,219 T/C 0.49 0.24 11.246 14 - 37 TARI

QTL-cbsd4/cmd-1 MCBSDS, MCMDS 4 24.67 S4_24670203 24,670,203 T/G 0.24 0.14 5.441 14 K4_Cluster1

QTL-cbsd12/cmd-1 MBSDS, MCMDS 12 0.93 S12_929320 929,320 T/G 0.06 0.13 5.941 37, 8 PYTKIB

QTL-cbsd12/cmd-2 MBSDS, MCMDS 12 7.93–7.95 S12_7929439 7,929,439 G/C 0.37 0.23 8.749 8, 33 Several

Note: Chr, chromosome; SNP, single nucleotide polymorphism; PVE, phenotypic variance explained; AYTKIB, advanced yield trial at Kibaha; CETUKG, clonal evaluation

trial at Ukiriguru; PYTKIB, preliminary yield trial at Kibaha; PYTUKG, preliminary yield trial at Ukiriguru.

and PYTKIB subpopulations, respectively. QTL-cbsd9-1
accounted for 9% of PVE, whereas QTL-cbsd11-2 accounted

for 5% of PVE. The annotated gene within the QTL-cbsd11-
2 is Manes.11G120800.1. This gene is known to encode for

a protein kinase. Overexpression of a similar gene in tobacco

(Nicotiana tabacum L.) stimulated plant defense responses (Li

et al., 2018). Similarly, the region on chromosome 9, with

a significant marker S9_10707044, contains a single gene

(Manes.09G074200.1) that encodes a kinase family protein.

Song et al. (1995) reported that a receptor kinase-like protein

is encoded by the rice disease resistance gene Xa21. The two

genes on chromosomes 9 and 11 could play a role in cassava’s

defense mechanism to confer CBSD resistance. However, fur-

ther investigation to validate the presence of CBSD resistance

is needed.

Nine markers representing four loci on chromosomes 2,

3, 8, and 10 were significantly associated with CBSDRS

responses (Table 6, Supplemental File S1). Two loci on

chromosomes 3 (QTL-cbsdrs3-1) and 8 (QTL-cbsdrs8-1),
which occurred in AYTKIB accessions, accounted for 30

and 32% of the phenotypic variation (chromosomes 3 and 8,

respectively). Although the other two minor loci on chromo-

somes 2 (QTL-cbsdrs2-1) and 10 (QTL-cbsdrs10-1), which

were detected in the Ukiriguru accessions, explained 8 and

11% of PVE (chromosomes 2 and 10, respectively). The

Manes.08G079900.1 gene within the QTL region on chro-

mosome 8 is known to express a wall-associated kinase-like

receptor. Shi et al. (2016) cloned Snn1, which is a member of

the wall-associated kinase class receptors and found that these

receptors drive pathways for biotrophic pathogen resistance in

wheat (Triticum aestivum L.). No annotated genes within the

region were significant for resistance to CBSDRS on chromo-

some 3 are in the cassava reference genome.

In conclusion, discovery of new loci and associated mark-

ers will facilitate early selection during the season so breed-

ers can have adequate information early enough to make

decisions. Although CBSD resistance genes in some Ugan-

dan accessions are thought to have originated from Tanzania

during germplasm exchange, the MCBSDS genes discovered

in this study are not localized on chromosomes 5, 11, and 18,

as reported for Ugandan germplasm (Kayondo et al., 2018). In

this study, we observed that the use of fewer but closely related

individuals, particularly from the same clusters, improves the

discovery of QTL compared with the use of a large number of

individuals. These results are similar to the GWAS findings of

Bradbury, Parker, Hamblin, and Jannink (2011) who reported

that accounting for individual relatedness in barley improved

the detection of true QTL.

6 CONCLUSIONS

Genomic prediction and selection have been touted as tools

that could greatly modernize plant breeding and accelerate

genetic gain. In this study, we examined the power of diverse

breeding lines assembled from two breeding programs, at dif-

ferent breeding stages, to predict traits and discover QTL.

Differentiation of the TARI population could have resulted

from existing restrictions on clonal movement between pro-

grams. This restriction was imposed to contain the spread of

cassava foliar diseases between the Lake and Coastal Zones

(Legg & Thresh, 2000). Although, there is a long tradition of

germplasm sharing between Tanzania and Uganda, the intro-

gression occurring in the Ugandan TP is large and is restricted

to chromosome 1, whereas those in Tanzania are spread across

all 18 chromosomes. This could suggest that the Ugandan
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introgression could be more recent than that in Tanzania. This

may explain the population differentiation between subpopu-

lations with the introgression versus those without.

There was no relationship between increased plot size and

decreased error variance across all traits. For some traits,

larger plots were preferable, though for other traits, smaller

plots were. However, this conclusion needs more proven evi-

dence to verify the results. If this finding is confirmed, then

breeders need to reconsider whether utilizing larger plots is

cost-effective.

An inverse relationship between heritability estimates and

trait prediction accuracy were observed for some traits, con-

trary to other plant studies (Combs & Bernardo, 2013; Lian,

Jacobson, Zhong, & Bernardo, 2014). We are not certain

whether this inverse relationship is caused by noise in the data

or is true; therefore, further assessments are needed to deter-

mine this relationship.

Prediction accuracies within and between locations

(Kibaha and Ukiriguru) were generally lower than other

cassava populations. Although larger TP sizes have been

associated with improved accuracies, in this study, adding

clones from Kibaha to those from Ukiriguru and vice versa

did not improve the prediction accuracy of either population.

Similarly, adding the Ugandan clones to either the Kibaha or

Ukiriguru set did not improve the accuracy of either. The lack

of relatedness between germplasm and population structure

and the impact of the genotype × environment interaction

negatively impacted accuracy estimates.

Generally, across breeding cycles, GS is more difficult

in plants than in animals. This is because every year, plant

breeders largely use new parents, some with an unknown

background from other breeding programs or competitors,

whereas animal breeders work in closed populations. This

could make it challenging for breeders to keep materials ade-

quately related in cross-cycle GS. The successful use of GS

is dependent on a close relationship between individuals in

the training and test sets. Clones at similar breeding stages

were more valuable than a mixture of clones from differ-

ent breeding stages when constructing TPs. This is because

clones in the same generation are likely to share an ancestor

a few generations back and therefore marker–QTL linkages

are preserved because of the limited number of recombination

events (Habier, Fernando, & Garrick, 2013). It is also possible

that closely related population share more polymorphic loci

and share large fraction of genetic background causing suffi-

cient genetic variation (Lorenz & Cohen, 2012; Mohammadi,

Tiede, & Smith, 2015).

Consistent with the findings of other researchers, we con-

clude that clones from the same breeding cycles are currently

better option as candidates for GS TPs (Cericola et al., 2017;

Michel et al., 2018; Song et al., 2017). In addition, it may

not be useful to constitute TPs from programs with diver-

gent populations or populations separated by barriers like the

existing restriction on clone movement between the two

Tanzanian programs. Cross-cycle GS, especially in more

advanced breeding stages, needs to be investigated further

because the prediction accuracy was very low. The impact

of genotype × environment modeling on unreplicated clones

across environments needs to be investigated further. More-

over, clones in the early breeding stage provided more reli-

able trait prediction accuracy because of their inherent genetic

variation. Therefore, these clones are better candidates for

TP construction.

We identified accessions carrying MCMDS, MCBSDS,

and CBSDRS resistance. Some of the loci identified in these

accessions have been reported previously. However, other loci

are new. These results will be valuable for cassava breed-

ing against CMD, CBSD, and CBSDRS. Although we have

learned valuable lessons from this study, we still need to con-

tinue to improve our experimental designs, data capture, and

construction of TPs so that genomic prediction and accuracy

will be more reliable. We echo the lessons from Wolfe et al.

(2017) to continue to improve on data quality and the selec-

tion of individuals to make TPs so that we can maximize

genetic gains.
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