207 research outputs found

    QIP = PSPACE

    Full text link
    We prove that the complexity class QIP, which consists of all problems having quantum interactive proof systems, is contained in PSPACE. This containment is proved by applying a parallelized form of the matrix multiplicative weights update method to a class of semidefinite programs that captures the computational power of quantum interactive proofs. As the containment of PSPACE in QIP follows immediately from the well-known equality IP = PSPACE, the equality QIP = PSPACE follows.Comment: 21 pages; v2 includes corrections and minor revision

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    Generalized Quantum Arthur-Merlin Games

    Get PDF
    This paper investigates the role of interaction and coins in public-coin quantum interactive proof systems (also called quantum Arthur-Merlin games). While prior works focused on classical public coins even in the quantum setting, the present work introduces a generalized version of quantum Arthur-Merlin games where the public coins can be quantum as well: the verifier can send not only random bits, but also halves of EPR pairs. First, it is proved that the class of two-turn quantum Arthur-Merlin games with quantum public coins, denoted qq-QAM in this paper, does not change by adding a constant number of turns of classical interactions prior to the communications of the qq-QAM proof systems. This can be viewed as a quantum analogue of the celebrated collapse theorem for AM due to Babai. To prove this collapse theorem, this paper provides a natural complete problem for qq-QAM: deciding whether the output of a given quantum circuit is close to a totally mixed state. This complete problem is on the very line of the previous studies investigating the hardness of checking the properties related to quantum circuits, and is of independent interest. It is further proved that the class qq-QAM_1 of two-turn quantum-public-coin quantum Arthur-Merlin proof systems with perfect completeness gives new bounds for standard well-studied classes of two-turn interactive proof systems. Finally, the collapse theorem above is extended to comprehensively classify the role of interaction and public coins in quantum Arthur-Merlin games: it is proved that, for any constant m>1, the class of problems having an m-turn quantum Arthur-Merlin proof system is either equal to PSPACE or equal to the class of problems having a two-turn quantum Arthur-Merlin game of a specific type, which provides a complete set of quantum analogues of Babai's collapse theorem.Comment: 31 pages + cover page, the proof of Lemma 27 (Lemma 24 in v1) is corrected, and a new completeness result is adde

    On the power of quantum, one round, two prover interactive proof systems

    Full text link
    We analyze quantum two prover one round interactive proof systems, in which noninteracting provers can share unlimited entanglement. The maximum acceptance probability is characterized as a superoperator norm. We get some partial results about the superoperator norm, and in particular we analyze the "rank one" case.Comment: 12 pages, no figure

    Quantum interactive proofs and the complexity of separability testing

    Get PDF
    We identify a formal connection between physical problems related to the detection of separable (unentangled) quantum states and complexity classes in theoretical computer science. In particular, we show that to nearly every quantum interactive proof complexity class (including BQP, QMA, QMA(2), and QSZK), there corresponds a natural separability testing problem that is complete for that class. Of particular interest is the fact that the problem of determining whether an isometry can be made to produce a separable state is either QMA-complete or QMA(2)-complete, depending upon whether the distance between quantum states is measured by the one-way LOCC norm or the trace norm. We obtain strong hardness results by proving that for each n-qubit maximally entangled state there exists a fixed one-way LOCC measurement that distinguishes it from any separable state with error probability that decays exponentially in n.Comment: v2: 43 pages, 5 figures, completely rewritten and in Theory of Computing (ToC) journal forma

    Quantum Interactive Proofs with Competing Provers

    Full text link
    This paper studies quantum refereed games, which are quantum interactive proof systems with two competing provers: one that tries to convince the verifier to accept and the other that tries to convince the verifier to reject. We prove that every language having an ordinary quantum interactive proof system also has a quantum refereed game in which the verifier exchanges just one round of messages with each prover. A key part of our proof is the fact that there exists a single quantum measurement that reliably distinguishes between mixed states chosen arbitrarily from disjoint convex sets having large minimal trace distance from one another. We also show how to reduce the probability of error for some classes of quantum refereed games.Comment: 13 pages, to appear in STACS 200
    corecore