721 research outputs found

    Cross-layer Balanced and Reliable Opportunistic Routing Algorithm for Mobile Ad Hoc Networks

    Full text link
    For improving the efficiency and the reliability of the opportunistic routing algorithm, in this paper, we propose the cross-layer and reliable opportunistic routing algorithm (CBRT) for Mobile Ad Hoc Networks, which introduces the improved efficiency fuzzy logic and humoral regulation inspired topology control into the opportunistic routing algorithm. In CBRT, the inputs of the fuzzy logic system are the relative variance (rv) of the metrics rather than the values of the metrics, which reduces the number of fuzzy rules dramatically. Moreover, the number of fuzzy rules does not increase when the number of inputs increases. For reducing the control cost, in CBRT, the node degree in the candidate relays set is a range rather than a constant number. The nodes are divided into different categories based on their node degree in the candidate relays set. The nodes adjust their transmission range based on which categories that they belong to. Additionally, for investigating the effection of the node mobility on routing performance, we propose a link lifetime prediction algorithm which takes both the moving speed and moving direction into account. In CBRT, the source node determines the relaying priorities of the relaying nodes based on their utilities. The relaying node which the utility is large will have high priority to relay the data packet. By these innovations, the network performance in CBRT is much better than that in ExOR, however, the computation complexity is not increased in CBRT.Comment: 14 pages, 17 figures, 31 formulas, IEEE Sensors Journal, 201

    Optimized reduction approach of congestion in mobile ad hoc network based on Lagrange multiplier

    Get PDF
    Over the past decades, computer networks have experienced an outbreak and with that came severe congestion problems. Congestion is a crucial determinant in the delivery of delay-sensitive applications (voice and video) and the quality of the network. in this paper, the Lagrangian optimization rate, delay, packet loss, and congestion approach (LORDPC) are presented. A congestion avoidance routing method for device-to-device (D2D) nodes in an ad hoc network that addresses the traffic intensity problem. The method of Lagrange multipliers is utilized for active route election to dodge heavy traffic links. To demonstrate the effectiveness of our proposed method, we applied extensive simulation that presents path discovery and selection. Results show that LORDPC decreases delay and traffic intensity while maintaining a high bitrate and low packet loss rate and it outperformed the ad hoc on-demand distance vector (AODV) protocol and the Lagrangian optimization rate, delay, and packet loss, approach (LORDP)
    • …
    corecore