7,427 research outputs found

    Programmable and customized intelligence for traffic steering in 5G networks using open RAN architectures

    Get PDF
    5G and beyond mobile networks will support heterogeneous use cases at an unprecedented scale, thus demanding automated control and optimization of network functionalities customized to the needs of individual users. Such fine-grained control of the Radio Access Network (RAN) is not possible with the current cellular architecture. To fill this gap, the Open RAN paradigm and its specification introduce an “open” architecture with abstractions that enable closed-loop control and provide data-driven, and intelligent optimization of the RAN at the userlevel. This is obtained through custom RAN control applications (i.e., xApps) deployed on near-real-time RAN Intelligent Controller (near-RT RIC) at the edge of the network. Despite these premises, as of today the research community lacks a sandbox to build data-driven xApps, and create large-scale datasets for effective Artificial Intelligence (AI) training. In this paper, we address this by introducing ns-O-RAN , a software framework that integrates a real-world, production-grade near- RT RIC with a 3GPP-based simulated environment on ns-3, enabling at the same time the development of xApps and automated large-scale data collection and testing of Deep Reinforcement Learning (DRL)- driven control policies for the optimization at the user-level. In addition, we propose the first user-specific O-RAN Traffic Steering (TS) intelligent handover framework. It uses Random Ensemble Mixture (REM), a Conservative Q-learning (CQL) algorithm, combined with a state-of-the-art Convolutional Neural Network (CNN) architecture, to optimally assign a serving base station to each user in the network. Our TS xApp, trained with more than 40 million data points collected by ns-O-RAN, runs on the near-RT RIC and controls the ns-O-RAN base stations. We evaluate the performance on a large-scale deployment with up to 126 users with 8 base stations, showing that the xApp-based handover improves throughput and spectral efficiency by an average of 50% over traditional handover heuristics, with less mobility overhead

    Federated Learning for Connected and Automated Vehicles: A Survey of Existing Approaches and Challenges

    Full text link
    Machine learning (ML) is widely used for key tasks in Connected and Automated Vehicles (CAV), including perception, planning, and control. However, its reliance on vehicular data for model training presents significant challenges related to in-vehicle user privacy and communication overhead generated by massive data volumes. Federated learning (FL) is a decentralized ML approach that enables multiple vehicles to collaboratively develop models, broadening learning from various driving environments, enhancing overall performance, and simultaneously securing local vehicle data privacy and security. This survey paper presents a review of the advancements made in the application of FL for CAV (FL4CAV). First, centralized and decentralized frameworks of FL are analyzed, highlighting their key characteristics and methodologies. Second, diverse data sources, models, and data security techniques relevant to FL in CAVs are reviewed, emphasizing their significance in ensuring privacy and confidentiality. Third, specific and important applications of FL are explored, providing insight into the base models and datasets employed for each application. Finally, existing challenges for FL4CAV are listed and potential directions for future work are discussed to further enhance the effectiveness and efficiency of FL in the context of CAV

    A Holistic Investigation on Terahertz Propagation and Channel Modeling Toward Vertical Heterogeneous Networks

    Full text link
    User-centric and low latency communications can be enabled not only by small cells but also through ubiquitous connectivity. Recently, the vertical heterogeneous network (V-HetNet) architecture is proposed to backhaul/fronthaul a large number of small cells. Like an orchestra, the V-HetNet is a polyphony of different communication ensembles, including geostationary orbit (GEO), and low-earth orbit (LEO) satellites (e.g., CubeSats), and networked flying platforms (NFPs) along with terrestrial communication links. In this study, we propose the Terahertz (THz) communications to enable the elements of V-HetNets to function in harmony. As THz links offer a large bandwidth, leading to ultra-high data rates, it is suitable for backhauling and fronthauling small cells. Furthermore, THz communications can support numerous applications from inter-satellite links to in-vivo nanonetworks. However, to savor this harmony, we need accurate channel models. In this paper, the insights obtained through our measurement campaigns are highlighted, to reveal the true potential of THz communications in V-HetNets.Comment: It has been accepted for the publication in IEEE Communications Magazin

    When Cellular Meets WiFi in Wireless Small Cell Networks

    Full text link
    The deployment of small cell base stations(SCBSs) overlaid on existing macro-cellular systems is seen as a key solution for offloading traffic, optimizing coverage, and boosting the capacity of future cellular wireless systems. The next-generation of SCBSs is envisioned to be multi-mode, i.e., capable of transmitting simultaneously on both licensed and unlicensed bands. This constitutes a cost-effective integration of both WiFi and cellular radio access technologies (RATs) that can efficiently cope with peak wireless data traffic and heterogeneous quality-of-service requirements. To leverage the advantage of such multi-mode SCBSs, we discuss the novel proposed paradigm of cross-system learning by means of which SCBSs self-organize and autonomously steer their traffic flows across different RATs. Cross-system learning allows the SCBSs to leverage the advantage of both the WiFi and cellular worlds. For example, the SCBSs can offload delay-tolerant data traffic to WiFi, while simultaneously learning the probability distribution function of their transmission strategy over the licensed cellular band. This article will first introduce the basic building blocks of cross-system learning and then provide preliminary performance evaluation in a Long-Term Evolution (LTE) simulator overlaid with WiFi hotspots. Remarkably, it is shown that the proposed cross-system learning approach significantly outperforms a number of benchmark traffic steering policies

    Interaction-aware Kalman Neural Networks for Trajectory Prediction

    Full text link
    Forecasting the motion of surrounding obstacles (vehicles, bicycles, pedestrians and etc.) benefits the on-road motion planning for intelligent and autonomous vehicles. Complex scenes always yield great challenges in modeling the patterns of surrounding traffic. For example, one main challenge comes from the intractable interaction effects in a complex traffic system. In this paper, we propose a multi-layer architecture Interaction-aware Kalman Neural Networks (IaKNN) which involves an interaction layer for resolving high-dimensional traffic environmental observations as interaction-aware accelerations, a motion layer for transforming the accelerations to interaction aware trajectories, and a filter layer for estimating future trajectories with a Kalman filter network. Attributed to the multiple traffic data sources, our end-to-end trainable approach technically fuses dynamic and interaction-aware trajectories boosting the prediction performance. Experiments on the NGSIM dataset demonstrate that IaKNN outperforms the state-of-the-art methods in terms of effectiveness for traffic trajectory prediction.Comment: 8 pages, 4 figures, Accepted for IEEE Intelligent Vehicles Symposium (IV) 202
    corecore