1,430 research outputs found

    Reaction-diffusion systems with constant diffusivities: conditional symmetries and form-preserving transformations

    Full text link
    Q-conditional symmetries (nonclassical symmetries) for a general class of two-component reaction-diffusion systems with constant diffusivities are studied. Using the recently introduced notion of Q-conditional symmetries of the first type (R. Cherniha J. Phys. A: Math. Theor., 2010. vol. 43., 405207), an exhaustive list of reaction-diffusion systems admitting such symmetry is derived. The form-preserving transformations for this class of systems are constructed and it is shown that this list contains only non-equivalent systems. The obtained symmetries permit to reduce the reaction-diffusion systems under study to two-dimensional systems of ordinary differential equations and to find exact solutions. As a non-trivial example, multiparameter families of exact solutions are explicitly constructed for two nonlinear reaction-diffusion systems. A possible interpretation to a biologically motivated model is presented

    New conditional symmetries and exact solutions of nonlinear reaction-diffusion-convection equations. II

    Full text link
    In the first part of this paper math-ph/0612078, a complete description of Q-conditional symmetries for two classes of reaction-diffusion-convection equations with power diffusivities is derived. It was shown that all the known results for reaction-diffusion equations with power diffusivities follow as particular cases from those obtained in math-ph/0612078 but not vise versa. In the second part the symmetries obtained in are successfully applied for constructing exact solutions of the relevant equations. In the particular case, new exact solutions of nonlinear reaction-diffusion-convection (RDC) equations arising in application and their natural generalizations are found

    On the Integrability, B\"Acklund Transformation and Symmetry Aspects of a Generalized Fisher Type Nonlinear Reaction-Diffusion Equation

    Get PDF
    The dynamics of nonlinear reaction-diffusion systems is dominated by the onset of patterns and Fisher equation is considered to be a prototype of such diffusive equations. Here we investigate the integrability properties of a generalized Fisher equation in both (1+1) and (2+1) dimensions. A Painlev\'e singularity structure analysis singles out a special case (m=2m=2) as integrable. More interestingly, a B\"acklund transformation is shown to give rise to a linearizing transformation for the integrable case. A Lie symmetry analysis again separates out the same m=2m=2 case as the integrable one and hence we report several physically interesting solutions via similarity reductions. Thus we give a group theoretical interpretation for the system under study. Explicit and numerical solutions for specific cases of nonintegrable systems are also given. In particular, the system is found to exhibit different types of travelling wave solutions and patterns, static structures and localized structures. Besides the Lie symmetry analysis, nonclassical and generalized conditional symmetry analysis are also carried out.Comment: 30 pages, 10 figures, to appear in Int. J. Bifur. Chaos (2004

    Group Analysis of Nonlinear Fin Equations

    Get PDF
    Group classification of a class of nonlinear fin equations is carried out exhaustively. Additional equivalence transformations and conditional equivalence groups are also found. They allow to simplify results of classification and further applications of them. The derived Lie symmetries are used to construct exact solutions of truly nonlinear equations for the class under consideration. Nonclassical symmetries of the fin equations are discussed. Adduced results amend and essentially generalize recent works on the subject [M. Pakdemirli and A.Z. Sahin, Appl. Math. Lett., 2006, V.19, 378-384; A.H. Bokhari, A.H. Kara and F.D. Zaman, Appl. Math. Lett., 2006, V.19, 1356-1340].Comment: 6 page

    Lie and conditional symmetries of a class of nonlinear (1+2)-dimensional boundary value problems

    Full text link
    A new definition of conditional invariance for boundary value problems involving a wide range of boundary conditions (including initial value problems as a special case) is proposed. It is shown that other definitions worked out in order to find Lie symmetries of boundary value problems with standard boundary conditions, follow as particular cases from our definition. Simple examples of direct applicability to the nonlinear problems arising in applications are demonstrated. Moreover, the successful application of the definition for the Lie and conditional symmetry classification of a class of (1+2)-dimensional nonlinear boundary value problems governed by the nonlinear diffusion equation in a semi-infinite domain is realised. In particular, it is proved that there is a special exponent, k=−2k=-2, for the power diffusivity uku^k when the problem in question with non-vanishing flux on the boundary admits additional Lie symmetry operators compared to the case k≠−2k\not=-2. In order to demonstrate the applicability of the symmetries derived, they are used for reducing the nonlinear problems with power diffusivity uku^k and a constant non-zero flux on the boundary (such problems are common in applications and describing a wide range of phenomena) to (1+1)-dimensional problems. The structure and properties of the problems obtained are briefly analysed. Finally, some results demonstrating how Lie invariance of the boundary value problem in question depends on geometry of the domain are presented.Comment: 25 pages; the main results were presented at the Conference Symmetry, Methods, Applications and Related Fields, Vancouver, Canada, May 13-16, 201

    Asymptotic scaling symmetries for nonlinear PDEs

    Full text link
    In some cases, solutions to nonlinear PDEs happen to be asymptotically (for large xx and/or tt) invariant under a group GG which is not a symmetry of the equation. After recalling the geometrical meaning of symmetries of differential equations -- and solution-preserving maps -- we provide a precise definition of asymptotic symmetries of PDEs; we deal in particular, for ease of discussion and physical relevance, with scaling and translation symmetries of scalar equations. We apply the general discussion to a class of ``Richardson-like'' anomalous diffusion and reaction-diffusion equations, whose solution are known by numerical experiments to be asymptotically scale invariant; we obtain an analytical explanation of the numerically observed asymptotic scaling properties. We also apply our method to a different class of anomalous diffusion equations, relevant in optical lattices. The methods developed here can be applied to more general equations, as clear by their geometrical construction
    • …
    corecore