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Group analysis of nonlinear fin equations
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Abstract

Group classification of a class of nonlinear fin equations is carried out exhaustively. Additional equivalence transformations and
conditional equivalence groups are also found. These enable us to simplify the classification results and their further applications.
The derived Lie symmetries are used to construct exact solutions of truly nonlinear equations for the class under consideration.
Nonclassical symmetries of the fin equations are discussed. Adduced results complete and essentially generalize recent works on
the subject [M. Pakdemirli and A.Z. Sahin, Similarity analysis of a nonlinear fin equation, Appl. Math. Lett. 19 (2006) 378–384;
A.H. Bokhari, A.H. Kara and F.D. Zaman, A note on a symmetry analysis and exact solutions of a nonlinear fin equation, Appl.
Math. Lett. 19 (2006) 1356–1360].
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Investigation of heat conductivity and diffusion processes leads to interesting mathematical models which can
be often formulated in terms of partial differential equations. In the general case the coefficients of model equations
include explicitly both dependent and independent model variables and this makes difficulties in studying such models.

In this letter the class of nonlinear fin equations of the general form

ut = (D(u)ux )x + h(x)u, (1)

where Du 6= 0, is investigated within the symmetry framework. Here u is treated as the dimensionless temperature,
t and x the dimensionless time and space variables, D the thermal conductivity, h = −N 2 f (x), N the fin parameter
and f the heat transfer coefficient.

The condition Du = 0 corresponds to the linear case of (1) which was completely investigated from the Lie
symmetry point of view a long time ago [6,12]. Moreover, the sets of linear and nonlinear equations of form (1)
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Table 1
Results of group classification

N D(u) h(x) Basis of Amax

1 ∀ ∀ ∂t
2 ∀ 1 ∂t , ∂x
3 ∀ x−2 ∂t , 2t∂t + x∂x
4 un εxq ∂t ,−qnt∂t + nx∂x + (q + 2)u∂u
5 un εex ∂t ,−nt∂t + n∂x + u∂u
6 u−4/3 h1(x) ∂t ,−4qt∂t + 4(x2

+ p)∂x − 3(4x + q)u∂u
7 ∀ 0 ∂t , ∂x , 2t∂t + x∂x
8 (u + 1)−1 ε ∂t , ∂x , eεt ∂t + εeεt (u + 1)∂u
9 eu 0 ∂t , ∂x , 2t∂t + x∂x , x∂x + 2∂u

10 un , n 6= −
4
3 ε ∂t , ∂x , e−εnt (∂t + εu∂u), nx∂x + 2u∂u

11 (u + α)n , n 6= −
4
3 0 ∂t , ∂x , 2t∂t + x∂x , nx∂x + 2(u + α)∂u

12 u−4/3 ε ∂t , ∂x , e
4
3 εt (∂t + εu∂u), 2x∂x − 3u∂u , x2∂x − 3xu∂u

13 (u + α)−4/3 0 ∂t , ∂x , 2t∂t + x∂x , 2x∂x − 3(u + α)∂u , x2∂x − 3x(u + α)∂u

can be separately investigated under restriction with point symmetries. That is why the linear case is excluded from
consideration in the present letter.

The problem of group classification for the degenerate case h = 0 (i.e. the class of nonlinear one-dimensional
diffusion equations) was first solved by Ovsiannikov [11,12]. Equations of the form (1) with h being a constant are in
the class of diffusion–reaction equations classified by Dorodnitsyn [3,5]. Group classification of the subclass where
the thermal conductivity is a power function of the temperature was carried out in [17]. We keep the above cases
in the presentation of results for reasons of classification usability. Note also that Lie symmetries of the class of
quasi-linear parabolic equations in two independent variables, which has a wide equivalence group and covers all the
aforementioned classes, were classified in [1,7].

Recently Lie symmetries and reductions of equations from class (1) were considered in a number of papers [2,
13,14]. (See these works for references on the physical meaning and applications of equations from class (1).) In
contrast to these works, the study in our letter is concentrated on rigorous and exhaustive group classification of
the whole class (1) and construction of exact solutions for truly nonlinear ‘variable-coefficient’ equations from this
class. Additional equivalence transformations and conditional equivalence groups are also found. These enable us to
simplify the classification results and their further applications. To find exact solutions, we apply both classical Lie
reduction and nonclassical symmetry approaches.

2. Group classification and related problems

Group classification of class (1) is performed in the framework of the classical approach [12]. All necessary objects
(the equivalence group, the kernel and all inequivalent extensions of maximal Lie invariance algebras) are found.
Moreover, we extend the classical approach with additional equivalence transformations and a conditional equivalence
group for simplification of the classification results.

The equivalence group G∼ of class (1) is formed by the transformations

t̃ = δ1t + δ2, x̃ = δ3x + δ4, ũ = δ5u, D̃ = δ−1
1 δ2

3 D, h̃ = δ−1
1 h,

where δi , i = 1, . . . , 5, are arbitrary constants, δ1δ3δ5 6= 0. The connected component of the unity in G∼ is formed
by continuous transformations having δ1 > 0, δ3 > 0 and δ5 > 0. The complement discrete component of G∼ is
generated via three involutive transformations of alternating sign in the sets {t, D, h}, {x} and {u}.

The kernel of the maximal Lie invariance algebras of equations from class (1) coincides with the one-dimensional
algebra 〈∂t 〉.

All possible G∼-inequivalent cases of extension of the maximal Lie invariance algebras are exhausted by ones
adduced in Table 1, where

h1(x) = ε exp
[∫

q

x2 + p
dx

]
; p ∈ {−1, 0, 1}, ε = ±1, α ∈ {0, 1} mod G∼

; n 6= 0, q 6= 0.
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Case 6 was missed in [13] and in the subsequent papers on the subject. The parameter function h1 equals the
following functions, depending on values of p:

p = −1: h1
= ε

∣∣∣∣ x − 1
x + 1

∣∣∣∣q/2

, p = 0: h1
= εe−q/x , p = 1: h1

= εeq arctan x .

Additionally we can assume that q = −1 mod G∼ if p = 0.
Some cases from Table 1 are equivalent with respect to point transformations which obviously do not belong

to G∼. These transformations are called additional equivalence transformations and lead to simplification of further
application of the group classification results. The pairs of point-equivalent extension cases and the corresponding
additional equivalence transformations are

6p=0 → 5ñ=−4/3: t̃ = t, x̃ = x−1, ũ = x3u;

6p=−1 → 4ñ=−4/3,q̃=q/2: t̃ = t, x̃ =
x − 1
x + 1

, ũ = 2−3/2(x + 1)3u;

11α 6=0 → 11α=0, 13α 6=0 → 13α=0: t̃ = t, x̃ = x, ũ = u + α;

10 → 11α=0, 12 → 13α=0

(
n = −

4
3

)
: t̃ =

1
εn

eεnt , x̃ = x, ũ = e−εt u.

The latter transformation was adduced e.g. in [5]. Case 6 with p = 1 is reduced to Case 4 only over the complex field.
Note also that Case 8 is reduced using the similar transformation

t̃ = −
1
ε

e−εt , x̃ = x, ũ = e−εt (u + 1)

into equation ũ t̃ = (ũ−1ũ x̃ )x̃ − ε which is not a member of the class under consideration.
All other cases from Table 1 cannot be transformed into each other by point transformations. Therefore, up to point

equivalence, possible cases of extension of maximal Lie invariance algebras are exhausted by Cases 1–5, 6p=1, 7–9,
11α=0 and 13α=0.

The singularity of the diffusion coefficient D = u−4/3 with a number of different values of h admitting extensions
of the Lie invariance algebra can be explained in the framework of conditional equivalence groups. The equivalence
group is extended under the condition D = u−4/3. More precisely, the equivalence group G∼

1 of the subclass of class
(1) with D = u−4/3 is formed by the transformations

t̃ = δ1t + δ2, x̃ =
δ3x + δ4

δ5x + δ6
, ũ = ±δ1(δ5x + δ6)

3u, h̃ = δ1
−1h,

where δi , i = 1, . . . , 6, are arbitrary constants, δ1 > 0 and δ3δ6 − δ4δ5 = ±1. G∼

1 is a nontrivial conditional
equivalence group of class (1). We point out that the first two additional equivalence transformations belong to G∼

1 .
Another example of a conditional equivalence group of class (1) arises under the condition h = 0. The equivalence

group G∼ of the whole class is then extended with translations with respect to u, i.e. the complete equivalence group
G∼

2 of nonlinear diffusion equations (h = 0) is formed by the transformations

t̃ = δ1t + δ2, x̃ = δ3x + δ4, ũ = δ5u + δ6, D̃ = δ−1
1 δ2

3 D,

where δi , i = 1, . . . , 6, are arbitrary constants, δ1δ3δ5 6= 0. The third additional equivalence transformation belongs
to G∼

2 .
The subclass of class (1) with D being a power function and h being a constant admits an extension of

the generalized equivalence group. The prefix “generalized” means that transformations of the variables t , x and
u can depend on arbitrary elements [8–10]. The associated generalized equivalence group G∼

3 is generated by
transformations from G∼ and the last of the above additional equivalence transformations, where ε is replaced by h.

Knowledge on conditional equivalence groups enables us to describe the set of admissible (form-preserving)
transformations in class (1) completely. See e.g. [17] and references therein.

Note also that the subclass of class (1) possessing nontrivial local conservation laws is exhausted by ones with h a
constant. Then the corresponding space CL of conservation laws is two dimensional. The conserved vectors and the
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characteristics of basis elements of CL are(
xe−ht u, e−ht

(
−x Dux +

∫
D

))
, xe−ht and (e−ht u,−e−ht Dux ), e−ht .

3. Similarity solutions

Cases 7–13 of Table 1 are presented by ‘constant coefficient’ diffusion–reaction equations. Moreover, all of
these cases either are usual nonlinear diffusion equations or can be reduced to them via additional equivalence
transformations. Exact solutions of ‘constant coefficient’ diffusion–reaction equations have been already investigated
intensively. See for example, [3–5,16]. That is why we choose Cases 4–6 as representatives among truly nonlinear
variable-coefficient fin equations, which are most interesting for Lie reduction.

As shown in the previous section, equation

ut = (u−4/3ux )x + h1(x)u (2)

(Case 6 of Table 1) admits the two-dimensional (noncommutative) Lie invariance algebra g generated by the operators

X1 = ∂t , X2 = −4qt∂t + 4(x2
+ p)∂x − 3(4x + q)u∂u .

A complete list of inequivalent nonzero subalgebras of g is exhausted by the algebras 〈X1〉, 〈X2〉 and 〈X1, X2〉.
Lie reduction of Eq. (2) to an algebraic equation can be made with the two-dimensional subalgebra 〈X1, X2〉 which

coincides with the whole algebra g. The associated ansatz and the reduced algebraic equation have the form

6.0. 〈X1, X2〉: u = C(x2
+ p)−3/2(h1(x))−3/4, C4/3

=
3
16 (q

2
+ 16p).

Substituting the solution C = ±
33/4

8 (q2
+ 16p)3/4 of the reduced algebraic equation into the ansatz, we construct the

exact solution

u = ±
33/4

8
(q2

+ 16p)3/4(x2
+ p)−3/2(h1(x))−3/4

of Eq. (2).
The ansätze and reduced equations corresponding to the one-dimensional subalgebras from the optimal system are

the following:

6.1. 〈X1〉: u = (ϕ(ω))−3, ω = x ; 3ϕωω = h1(ω)ϕ−3;
6.2. 〈X2〉: u = ((x2

+ p)1/2(h1(x))1/4ϕ(ω))−3, ω = th1(x);

3q2ω2ϕωω +
9
2

q2ωϕω − 3ϕ−4ϕω +
3

16
(q2

+ 16p)ϕ − εϕ−3
= 0.

The reduced equations obtained obviously have partial exact solutions which lead to the above exact solution of
Eq. (2) and can be constructed via reduction to algebraic equations. The problem is finding some different solutions.
We are only able to reduce the order of equation 6.1. Namely, in the variables

y = (ω2
+ p)−1/2(h1(ω))−1/4ϕ, ψ = (ω2

+ p)−1/2(h1(ω))−1/4((ω2
+ p)ϕω − ωϕ)

constructed with the induced symmetry operator 4(ω2
+ p)∂ω + (4ω + q)ϕ∂ϕ equation 6.1 takes the form

(4ψ − qy)ψy + qψ + 4py =
4
3εy−3. A better way of constructing exact solutions for the equations of Case 6

with p 6 0 is to map them to Cases 4 and 5 with additional equivalence transformations and then study the latter
cases.

Let us review results on Lie reduction for Cases 4 and 6. For each of these cases we denote the basis symmetry
operators adduced in Table 1 by X1 and X2. The structure and list of inequivalent subalgebras of the Lie invariance
algebras are the same as those in Case 6. The associated ansätze and reduced equations have the form (ε′ = sign t):

4.0. 〈X1, X2〉: u = Cx
q+2

n , (q + 2)(nq + n + q + 2)Cn+1
+ εn2C = 0;
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4.1. 〈X1〉: u = (ϕ(ω))
1

n+1 , ω = x , ϕωω + ε(n + 1)ωqϕ
1

n+1 = 0 if n 6= −1;

u = exp(ϕ(ω)), ω = x, ϕωω + εωqeϕ = 0 if n = −1;

4.2. 〈X2〉: u = |t |−
q+2
nq ϕ(ω), ω = |t |

1
q x , (ϕnϕω)ω + εωqϕ + ε′

q+2
nq ϕ − ε′ 1

qωϕω = 0;

5.0. 〈X1, X2〉: u = Ce
x
n , (n + 1)Cn+1

+ εn2C = 0;
5.1. 〈X1〉: u = (ϕ(ω))

1
n+1 , ω = x , ϕωω + ε(n + 1)eωϕ

1
n+1 = 0 if n 6= −1;

u = exp(ϕ(ω)), ω = x, ϕωω + εeϕ+ω
= 0 if n = −1;

5.2. 〈X2〉: u = |t |−
1
n ϕ(ω), ω = x + ln |t |, (ϕnϕω)ω + εeωϕ + ε′n−1ϕ − ε′ϕω = 0.

Reduction to algebraic equations gives the following solutions of the initial equations:

4. u = (−
q+2
εn2 (nq + n + q + 2))−

1
n x

q+2
n ;

5. u = (− n+1
εn2 )

−
1
n e

x
n .

There are Emden–Fowler and Lane–Emden equations and their different modifications among the reduced ordinary
differential equations. Solutions of these equations are known for a number of parameter values (see e.g. [15]). As a
result, classes of exact solutions can be constructed for fin equations corresponding to Cases 4 and 5 of Table 1 for a
wide set of the parameters n and q .

4. On nonclassical symmetries

We also study conditional (nonclassical) symmetries of equations which are members of the class (1). It is well
known that the operators with vanishing coefficient of ∂t give the so-called ‘no-go’ case in the study of conditional
symmetries of an arbitrary (1 + 1)-dimensional evolution equation since the problem of finding them is reduced to
that of solving a single equation which is equivalent to the initial one (see e.g. [18]). Since the determining equation
has more independent variables and, therefore, more degrees of freedom, it is more convenient often to guess a simple
solution or a simple ansatz for the determining equation, which can give a parametric set of complicated solutions of
the initial equation. For example, the fin equation

ut = (u−1ux )x + xu (3)

is conditionally invariant with respect to the operator ∂x + tu∂u . The associated ansatz u = et xϕ(ω), ω = t , reduces
Eq. (3) to the equation ϕω = 0, i.e. u = Cet x is its non-Lie exact solution which can be additionally extended with
symmetry transformations.

The known cases of the standard nonlinear diffusion equations (i.e. the equations of form (1) with h = 0) possessing
nontrivial conditional symmetry operators with nonvanishing coefficients of ∂t are exhausted by the cases equivalent
to D = eu and D = u−1/2. Moreover, for D = eu solutions associated with such conditional symmetry operators
are still Lie invariant. If h 6= 0, there exist other values of D such that the equations of form (1) possess conditional
symmetry operators which have nonvanishing coefficients of ∂t , are inequivalent to Lie invariance operators and even
lead to truly non-Lie exact solutions. Let us consider again Eq. (3). It also admits the conditional symmetry operator
∂t + xu∂u . The associated ansatz u = et xϕ(ω), ω = x , reduces Eq. (3) to the equation (ϕ−1ϕω)ω = 0. The general
solution ϕ = C1eC2x of the reduced equation gives a solution of (3), which is simplified to the above constructed one
with symmetry transformations.

Exhaustive description of nonclassical symmetry operators of equations from class (1) will be a subject of a
forthcoming paper.
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