1,251 research outputs found

    Stackelberg Network Pricing Games

    Get PDF
    We study a multi-player one-round game termed Stackelberg Network Pricing Game, in which a leader can set prices for a subset of mm priceable edges in a graph. The other edges have a fixed cost. Based on the leader's decision one or more followers optimize a polynomial-time solvable combinatorial minimization problem and choose a minimum cost solution satisfying their requirements based on the fixed costs and the leader's prices. The leader receives as revenue the total amount of prices paid by the followers for priceable edges in their solutions, and the problem is to find revenue maximizing prices. Our model extends several known pricing problems, including single-minded and unit-demand pricing, as well as Stackelberg pricing for certain follower problems like shortest path or minimum spanning tree. Our first main result is a tight analysis of a single-price algorithm for the single follower game, which provides a (1+ϵ)logm(1+\epsilon) \log m-approximation for any ϵ>0\epsilon >0. This can be extended to provide a (1+ϵ)(logk+logm)(1+\epsilon)(\log k + \log m)-approximation for the general problem and kk followers. The latter result is essentially best possible, as the problem is shown to be hard to approximate within \mathcal{O(\log^\epsilon k + \log^\epsilon m). If followers have demands, the single-price algorithm provides a (1+ϵ)m2(1+\epsilon)m^2-approximation, and the problem is hard to approximate within \mathcal{O(m^\epsilon) for some ϵ>0\epsilon >0. Our second main result is a polynomial time algorithm for revenue maximization in the special case of Stackelberg bipartite vertex cover, which is based on non-trivial max-flow and LP-duality techniques. Our results can be extended to provide constant-factor approximations for any constant number of followers

    Approximation Algorithms for Partially Colorable Graphs

    Get PDF
    Graph coloring problems are a central topic of study in the theory of algorithms. We study the problem of partially coloring partially colorable graphs. For alpha = alpha |V| such that the graph induced on S is k-colorable. Partial k-colorability is a more robust structural property of a graph than k-colorability. For graphs that arise in practice, partial k-colorability might be a better notion to use than k-colorability, since data arising in practice often contains various forms of noise. We give a polynomial time algorithm that takes as input a (1 - epsilon)-partially 3-colorable graph G and a constant gamma in [epsilon, 1/10], and colors a (1 - epsilon/gamma) fraction of the vertices using O~(n^{0.25 + O(gamma^{1/2})}) colors. We also study natural semi-random families of instances of partially 3-colorable graphs and partially 2-colorable graphs, and give stronger bi-criteria approximation guarantees for these family of instances

    Covering problems in edge- and node-weighted graphs

    Full text link
    This paper discusses the graph covering problem in which a set of edges in an edge- and node-weighted graph is chosen to satisfy some covering constraints while minimizing the sum of the weights. In this problem, because of the large integrality gap of a natural linear programming (LP) relaxation, LP rounding algorithms based on the relaxation yield poor performance. Here we propose a stronger LP relaxation for the graph covering problem. The proposed relaxation is applied to designing primal-dual algorithms for two fundamental graph covering problems: the prize-collecting edge dominating set problem and the multicut problem in trees. Our algorithms are an exact polynomial-time algorithm for the former problem, and a 2-approximation algorithm for the latter problem, respectively. These results match the currently known best results for purely edge-weighted graphs.Comment: To appear in SWAT 201

    A local 2-approximation algorithm for the vertex cover problem

    Get PDF
    We present a distributed 2-approximation algorithm for the minimum vertex cover problem. The algorithm is deterministic, and it runs in (Δ + 1)2 synchronous communication rounds, where Δ is the maximum degree of the graph. For Δ = 3, we give a 2-approximation algorithm also for the weighted version of the problem.Peer reviewe

    A 0.821-ratio purely combinatorial algorithm for maximum k-vertex cover in bipartite graphs

    Get PDF
    We study the polynomial time approximation of the max k-vertex cover problem in bipartite graphs and propose a purely combinatorial algorithm that beats the only such known algorithm, namely the greedy approach. We present a computer-assisted analysis of our algorithm, establishing that the worst case approximation guarantee is bounded below by 0.821. © Springer-Verlag Berlin Heidelberg 2016
    corecore