903 research outputs found

    Development of CUiris: A Dark-Skinned African Iris Dataset for Enhancement of Image Analysis and Robust Personal Recognition

    Get PDF
    Iris recognition algorithms, especially with the emergence of large-scale iris-based identification systems, must be tested for speed and accuracy and evaluated with a wide range of templates – large size, long-range, visible and different origins. This paper presents the acquisition of eye-iris images of dark-skinned subjects in Africa, a predominant case of verydark- brown iris images, under near-infrared illumination. The peculiarity of these iris images is highlighted from the histogram and normal probability distribution of their grayscale image entropy (GiE) values, in comparison to Asian and Caucasian iris images. The acquisition of eye-images for the African iris dataset is ongoing and will be made publiclyavailable as soon as it is sufficiently populated

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    Multispectral iris recognition analysis: Techniques and evaluation

    Get PDF
    This thesis explores the benefits of using multispectral iris information acquired using a narrow-band multispectral imaging system. Commercial iris recognition systems typically sense the iridal reflection pertaining to the near-infrared (IR) range of the electromagnetic spectrum. While near-infrared imaging does give a very reasonable image of the iris texture, it only exploits a narrow band of spectral information. By incorporating other wavelength ranges (infrared, red, green, blue) in iris recognition systems, the reflectance and absorbance properties of the iris tissue can be exploited to enhance recognition performance. Furthermore, the impact of eye color on iris matching performance can be determined. In this work, a multispectral iris image acquisition system was assembled in order to procure data from human subjects. Multispectral images pertaining to 70 different eyes (35 subjects) were acquired using this setup. Three different iris localization algorithms were developed in order to isolate the iris information from the acquired images. While the first technique relied on the evidence presented by a single spectral channel (viz., near-infrared), the other two techniques exploited the information represented in multiple channels. Experimental results confirm the benefits of utilizing multiple channel information for iris segmentation. Next, an image enhancement technique using the CIE L*a*b* histogram equalization method was designed to improve the quality of the multispectral images. Further, a novel encoding method based on normalized pixel intensities was developed to represent the segmented iris images. The proposed encoding algorithm, when used in conjunction with the traditional texture-based scheme, was observed to result in very good matching performance. The work also explored the matching interoperability of iris images across multiple channels. This thesis clearly asserts the benefits of multispectral iris processing, and provides a foundation for further research in this topic

    Eye Detection and Face Recognition Across the Electromagnetic Spectrum

    Get PDF
    Biometrics, or the science of identifying individuals based on their physiological or behavioral traits, has increasingly been used to replace typical identifying markers such as passwords, PIN numbers, passports, etc. Different modalities, such as face, fingerprint, iris, gait, etc. can be used for this purpose. One of the most studied forms of biometrics is face recognition (FR). Due to a number of advantages over typical visible to visible FR, recent trends have been pushing the FR community to perform cross-spectral matching of visible images to face images from higher spectra in the electromagnetic spectrum.;In this work, the SWIR band of the EM spectrum is the primary focus. Four main contributions relating to automatic eye detection and cross-spectral FR are discussed. First, a novel eye localization algorithm for the purpose of geometrically normalizing a face across multiple SWIR bands for FR algorithms is introduced. Using a template based scheme and a novel summation range filter, an extensive experimental analysis show that this algorithm is fast, robust, and highly accurate when compared to other available eye detection methods. Also, the eye locations produced by this algorithm provides higher FR results than all other tested approaches. This algorithm is then augmented and updated to quickly and accurately detect eyes in more challenging unconstrained datasets, spanning the EM spectrum. Additionally, a novel cross-spectral matching algorithm is introduced that attempts to bridge the gap between the visible and SWIR spectra. By fusing multiple photometric normalization combinations, the proposed algorithm is not only more efficient than other visible-SWIR matching algorithms, but more accurate in multiple challenging datasets. Finally, a novel pre-processing algorithm is discussed that bridges the gap between document (passport) and live face images. It is shown that the pre-processing scheme proposed, using inpainting and denoising techniques, significantly increases the cross-document face recognition performance

    Iris Recognition in Multiple Spectral Bands: From Visible to Short Wave Infrared

    Get PDF
    The human iris is traditionally imaged in Near Infrared (NIR) wavelengths (700nm-900nm) for iris recognition. The absorption co-efficient of color inducing pigment in iris, called Melanin, decreases after 700nm thus minimizing its effect when iris is imaged at wavelengths greater than 700nm. This thesis provides an overview and explores the efficacy of iris recognition at different wavelength bands ranging from visible spectrum (450nm-700nm) to NIR (700nm-900nm) and Short Wave Infrared (900nm-1600nm). Different matching methods are investigated at different wavelength bands to facilitate cross-spectral iris recognition.;The iris recognition analysis in visible wavelengths provides a baseline performance when iris is captured using common digital cameras. A novel blob-based matching algorithm is proposed to match RGB (visible spectrum) iris images. This technique generates a match score based on the similarity between blob like structures in the iris images. The matching performance of the blob based matching method is compared against that of classical \u27Iris Code\u27 matching method, SIFT-based matching method and simple correlation matching, and results indicate that the blob-based matching method performs reasonably well. Additional experiments on the datasets show that the iris images can be matched with higher confidence for light colored irides than dark colored irides in the visible spectrum.;As part of the analysis in the NIR spectrum, iris images captured in visible spectrum are matched against those captured in the NIR spectrum. Experimental results on the WVU multispectral dataset show promise in achieving a good recognition performance when the images are captured using the same sensor under the same illumination conditions and at the same resolution. A new proprietary \u27FaceIris\u27 dataset is used to investigate the ability to match iris images from a high resolution face image in visible spectrum against an iris image acquired in NIR spectrum. Matching in \u27FaceIris\u27 dataset presents a scenario where the two images to be matched are obtained by different sensors at different wavelengths, at different ambient illumination and at different resolution. Cross-spectral matching on the \u27FaceIris\u27 dataset presented a challenge to achieve good performance. Also, the effect of the choice of the radial and angular parameters of the normalized iris image on matching performance is presented. The experiments on WVU multispectral dataset resulted in good separation between genuine and impostor score distributions for cross-spectral matching which indicates that iris images in obtained in visible spectrum can be successfully matched against NIR iris images using \u27IrisCode\u27 method.;Iris is also analyzed in the Short Wave Infrared (SWIR) spectrum to study the feasibility of performing iris recognition at these wavelengths. An image acquisition setup was designed to capture the iris at 100nm interval spectral bands ranging from 950nm to 1650nm. Iris images are analyzed at these wavelengths and various observations regarding the brightness, contrast and textural content are discussed. Cross-spectral and intra-spectral matching was carried out on the samples collected from 25 subjects. Experimental results on this small dataset show the possibility of performing iris recognition in 950nm-1350nm wavelength range. Fusion of match scores from intra-spectral matching at different wavelength bands is shown to improve matching performance in the SWIR domain

    Multidimensional Fluorescence Imaging and Super-resolution Exploiting Ultrafast Laser and Supercontinuum Technology

    No full text
    This thesis centres on the development of multidimensional fluorescence imaging tools, with a particular emphasis on fluorescence lifetime imaging (FLIM) microscopy for application to biological research. The key aspects of this thesis are the development and application of tunable supercontinuum excitation sources based on supercontinuum generation in microstructured optical fibres and the development of stimulated emission depletion (STED) microscope capable of fluorescence lifetime imaging beyond the diffraction limit. The utility of FLIM for biological research is illustrated by examples of experimental studies of the molecular structure of sarcomeres in muscle fibres and of signalling at the immune synapse. The application of microstructured optical fibre to provide tunable supercontinuum excitation source for a range of FLIM microscopes is presented, including wide-field, Nipkow disk confocal and hyper-spectral line scanning FLIM microscopes. For the latter, a detailed description is provided of the supercontinuum source and semi-confocal line-scanning microscope configuration that realised multidimensional fluorescence imaging, resolving fluorescence images with respect to excitation and emission wavelength, fluorescence lifetime and three spatial dimensions. This included the first biological application of a fibre laser-pumped supercontinuum exploiting a tapered microstructured optical fibre that was able to generate a spectrally broad output extending to ~ 350 nm in the ultraviolet. The application of supercontinuum generation to the first super-resolved FLIM microscope is then described. This novel microscope exploited the concept of STED with a femtosecond mode-locked Ti:Sapphire laser providing a tunable excitation beam by pumping microstructured optical fibre for supercontinuum generation and directly providing the (longer wavelength) STED beam. This STED microscope was implemented in a commercial scanning confocal microscope to provide compatibility with standard biological imaging, and exploited digital holography using a spatial light modulator (SLM) to provide the appropriate phase manipulation for shaping the STED beam profile and to compensate for aberrations. The STED microscope was shown to be capable of recording super resolution in both the lateral and axial planes, according to the settings of the SLM
    • …
    corecore