16,812 research outputs found

    Phase metrology with multi-cycle two-colour pulses

    Get PDF
    Strong-field phenomena driven by an intense infrared (IR) laser depend on during what part of the field cycle they are initiated. By changing the sub-cycle character of the laser electric field it is possible to control such phenomena. For long pulses, sub-cycle shaping of the field can be done by adding a relatively weak, second harmonic of the driving field to the pulse. Through constructive and destructive interference, the combination of strong and weak fields can be used to change the probability of a strong-field process being initiated at any given part of the cycle. In order to control sub-cycle phenomena with optimal accuracy, it is necessary to know the phase difference of the strong and the weak fields precisely. If the weaker field is an even harmonic of the driving field, electrons ionized by the field will be asymmetrically distributed between the positive and negative directions of the combined fields. Information about the asymmetry can yield information about the phase difference. A technique to measure asymmetry for few-cycle pulses, called Stereo-ATI (Above Threshold Ionization), has been developed by [Paulus G G, et al 2003 Phys. Rev. Lett. 91]. This paper outlines an extension of this method to measure the phase difference between a strong IR and its second harmonic

    Reduced phase error through optimized control of a superconducting qubit

    Full text link
    Minimizing phase and other errors in experimental quantum gates allows higher fidelity quantum processing. To quantify and correct for phase errors in particular, we have developed a new experimental metrology --- amplified phase error (APE) pulses --- that amplifies and helps identify phase errors in general multi-level qubit architectures. In order to correct for both phase and amplitude errors specific to virtual transitions and leakage outside of the qubit manifold, we implement "half derivative" an experimental simplification of derivative reduction by adiabatic gate (DRAG) control theory. The phase errors are lowered by about a factor of five using this method to ∼1.6∘\sim 1.6^{\circ} per gate, and can be tuned to zero. Leakage outside the qubit manifold, to the qubit ∣2⟩|2\rangle state, is also reduced to ∼10−4\sim 10^{-4} for 20%20\% faster gates.Comment: 4 pages, 4 figures with 2 page supplementa

    Waveform Approach for Assessing Conformity of CISPR 16-1-1 Measuring Receivers

    Get PDF
    An alternative approach for assessing the conformity of electromagnetic interference measuring receivers with respect to the baseline CISPR 16-1-1 requirements is proposed. The method’s core is based on the generation of digitally synthesized complex waveforms comprising multisine excitation signals and modulated pulses. The superposition of multiple narrowband reference signals populating the standard frequency bands allows for a single-stage evaluation of the receiver’s voltage accuracy and frequency selectivity. Moreover, characterizing the response of the weighting detectors using modulated pulses is more repeatable and less restrictive than the conventional approach. This methodology significantly reduces the amount of time required to complete the verification of the receiver’s baseline magnitudes, because time-domain measurements enable a broadband assessment while the typical calibration methodology follows the time-consuming narrow band frequency sweep scheme. Since the reference signals are generated using arbitrary waveform generators, they can be easily reproduced from a standard numerical vector. For different test receivers, the results of such assessment are presented in the 9 kHz–1 GHz frequency range. Finally, a discussion on the measurement uncertainty of this methodology for assessing measuring receivers is given.Postprint (author's final draft

    Quantum-limited metrology and Bose-Einstein condensates

    Get PDF
    We discuss a quantum-metrology protocol designed to estimate a physical parameter in a Bose-Einstein condensate of N atoms, and we show that the measurement uncertainty can decrease faster than 1/N. The 1/N scaling is usually thought to be the best possible in any measurement scheme. From the perspective of quantum information theory, we outline the main idea that leads to a measurement uncertainty that scales better than 1/N. We examine in detail some potential problems and challenges that arise in implementing such a measurement protocol using a Bose-Einstein condensate. We discuss how some of these issues can be dealt with by using lower-dimensional condensates trapped in nonharmonic potentials.Comment: 32 pages, 1 figure, updated reference

    Differential Evolution for Many-Particle Adaptive Quantum Metrology

    Get PDF
    We devise powerful algorithms based on differential evolution for adaptive many-particle quantum metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods based on particle-swarm optimization. We apply our method to the binary-decision-tree model for quantum-enhanced phase estimation as well as to a new problem: a decision tree for adaptive estimation of the unknown bias of a quantum coin in a quantum walk and show how this latter case can be realized experimentally.Comment: Fig. 2(a) is the cover of Physical Review Letters Vol. 110 Issue 2

    Quantum Metrology with Cold Atoms

    Full text link
    Quantum metrology is the science that aims to achieve precision measurements by making use of quantum principles. Attribute to the well-developed techniques of manipulating and detecting cold atoms, cold atomic systems provide an excellent platform for implementing precision quantum metrology. In this chapter, we review the general procedures of quantum metrology and some experimental progresses in quantum metrology with cold atoms. Firstly, we give the general framework of quantum metrology and the calculation of quantum Fisher information, which is the core of quantum parameter estimation. Then, we introduce the quantum interferometry with single and multiparticle states. In particular, for some typical multiparticle states, we analyze their ultimate precision limits and show how quantum entanglement could enhance the measurement precision beyond the standard quantum limit. Further, we review some experimental progresses in quantum metrology with cold atomic systems.Comment: 53 pages, 9 figures, revised versio
    • …
    corecore