18,326 research outputs found

    Public Key Exchange Using Matrices Over Group Rings

    Get PDF
    We offer a public key exchange protocol in the spirit of Diffie-Hellman, but we use (small) matrices over a group ring of a (small) symmetric group as the platform. This "nested structure" of the platform makes computation very efficient for legitimate parties. We discuss security of this scheme by addressing the Decision Diffie-Hellman (DDH) and Computational Diffie-Hellman (CDH) problems for our platform.Comment: 21 page

    Cryptanalysis of some protocols using matrices over group rings

    Full text link
    We address a cryptanalysis of two protocols based on the supposed difficulty of discrete logarithm problem on (semi) groups of matrices over a group ring. We can find the secret key and break entirely the protocols

    Public Key Protocols over Twisted Dihedral Group Rings

    Get PDF
    Key management is a central problem in information security. The development of quantum computation could make the protocols we currently use unsecure. Because of that, new structures and hard problems are being proposed. In this work, we give a proposal for a key exchange in the context of NIST recommendations. Our protocol has a twisted group ring as setting, jointly with the so-called decomposition problem, and we provide a security and complexity analysis of the protocol. A computationally equivalent cryptosystem is also proposed

    Public Key Cryptography based on Semigroup Actions

    Full text link
    A generalization of the original Diffie-Hellman key exchange in (Z/pZ)∗(\Z/p\Z)^* found a new depth when Miller and Koblitz suggested that such a protocol could be used with the group over an elliptic curve. In this paper, we propose a further vast generalization where abelian semigroups act on finite sets. We define a Diffie-Hellman key exchange in this setting and we illustrate how to build interesting semigroup actions using finite (simple) semirings. The practicality of the proposed extensions rely on the orbit sizes of the semigroup actions and at this point it is an open question how to compute the sizes of these orbits in general and also if there exists a square root attack in general. In Section 2 a concrete practical semigroup action built from simple semirings is presented. It will require further research to analyse this system.Comment: 20 pages. To appear in Advances in Mathematics of Communication
    • …
    corecore