85 research outputs found

    Quantum computation and privacy

    Get PDF
    Quantum mechanics is one of the most intriguing subjects to study. The world works inherently differently on very small scales and can no longer be described by means of classical physics corresponding to our everyday intuition. Contrary to classical computing, quantum computation is based on the rules of quantum mechanics. It not only allows for more efficient local computations, but also has far-reaching effects on multi-party protocols. In this thesis, we investigate two cryptographic primitives for privacy protection using quantum computing: private information retrieval and anonymous transmissions

    On Locally Decodable Codes in Resource Bounded Channels

    Get PDF
    Constructions of locally decodable codes (LDCs) have one of two undesirable properties: low rate or high locality (polynomial in the length of the message). In settings where the encoder/decoder have already exchanged cryptographic keys and the channel is a probabilistic polynomial time (PPT) algorithm, it is possible to circumvent these barriers and design LDCs with constant rate and small locality. However, the assumption that the encoder/decoder have exchanged cryptographic keys is often prohibitive. We thus consider the problem of designing explicit and efficient LDCs in settings where the channel is slightly more constrained than the encoder/decoder with respect to some resource e.g., space or (sequential) time. Given an explicit function f that the channel cannot compute, we show how the encoder can transmit a random secret key to the local decoder using f(?) and a random oracle ?(?). We then bootstrap the private key LDC construction of Ostrovsky, Pandey and Sahai (ICALP, 2007), thereby answering an open question posed by Guruswami and Smith (FOCS 2010) of whether such bootstrapping techniques are applicable to LDCs in channel models weaker than just PPT algorithms. Specifically, in the random oracle model we show how to construct explicit constant rate LDCs with locality of polylog in the security parameter against various resource constrained channels

    Locally Decodable and Updatable Non-Malleable Codes and Their Applications

    Get PDF
    Non-malleable codes, introduced as a relaxation of error-correcting codes by Dziembowski, Pietrzak and Wichs (ICS \u2710), provide the security guarantee that the message contained in a tampered codeword is either the same as the original message or is set to an unrelated value. Various applications of non-malleable codes have been discovered, and one of the most significant applications among these is the connection with tamper-resilient cryptography. There is a large body of work considering security against various classes of tampering functions, as well as non-malleable codes with enhanced features such as leakage resilience. In this work, we propose combining the concepts of non-malleability, leakage resilience, and locality in a coding scheme. The contribution of this work is three-fold: 1. As a conceptual contribution, we define a new notion of locally decodable and updatable non-malleable code that combines the above properties. 2. We present two simple and efficient constructions achieving our new notion with different levels of security. 3. We present an important application of our new tool--securing RAM computation against memory tampering and leakage attacks. This is analogous to the usage of traditional non-malleable codes to secure implementations in the circuit model against memory tampering and leakage attacks

    Transparent Error Correcting in a Computationally Bounded World

    Get PDF
    We construct uniquely decodable codes against channels which are computationally bounded. Our construction requires only a public-coin (transparent) setup. All prior work for such channels either required a setup with secret keys and states, could not achieve unique decoding, or got worse rates (for a given bound on codeword corruptions). On the other hand, our construction relies on a strong cryptographic hash function with security properties that we only instantiate in the random oracle model

    Can We Access a Database Both Locally and Privately?

    Get PDF
    We consider the following strong variant of private information retrieval (PIR). There is a large database x that we want to make publicly available. To this end, we post an encoding X of x together with a short public key pk in a publicly accessible repository. The goal is to allow any client who comes along to retrieve a chosen bit x_i by reading a small number of bits from X, whose positions may be randomly chosen based on i and pk, such that even an adversary who can fully observe the access to X does not learn information about i. Towards solving the above problem, we study a weaker secret key variant where the data is encoded and accessed by the same party. This primitive, that we call an oblivious locally decodable code (OLDC), is independently motivated by applications such as searchable sym- metric encryption. We reduce the public-key variant of PIR to OLDC using an ideal form of obfuscation that can be instantiated heuristically with existing indistinguishability obfuscation candidates, or alternatively implemented with small and stateless tamper-proof hardware. Finally, a central contribution of our work is the first proposal of an OLDC candidate. Our candidate is based on a secretly permuted Reed-Muller code. We analyze the security of this candidate against several natural attacks and leave its further study to future work

    Extending The Applicability of Non-Malleable Codes

    Get PDF
    Modern cryptographic systems provide provable security guarantees as long as secret keys of the system remain confidential. However, if adversary learns some bits of information about the secret keys the security of the system can be breached. Side-channel attacks (like power analysis, timing analysis etc.) are one of the most effective tools employed by the adversaries to learn information pertaining to cryptographic secret keys. An adversary can also tamper with secret keys (say flip some bits) and observe the modified behavior of the cryptosystem, thereby leaking information about the secret keys. Dziembowski et al. (JACM 2018) defined the notion of non-malleable codes, a tool to protect memory against tampering. Non-malleable codes ensure that, when a codeword (generated by encoding an underlying message) is modified by some tampering function in a given tampering class, if the decoding of tampered codeword is incorrect then the decoded message is independent of the original message. In this dissertation, we focus on improving different aspects of non-malleable codes. Specifically, (1) we extend the class of tampering functions and present explicit constructions as well as general frameworks for constructing non-malleable codes. While most prior work considered ``compartmentalized" tampering functions, which modify parts of the codeword independently, we consider classes of tampering functions which can tamper with the entire codeword but are restricted in computational complexity. The tampering classes studied in this work include complexity classes NC0\mathsf{NC}^0, and AC0\mathsf{AC}^0. Also, earlier works focused on constructing non-malleable codes from scratch for different tampering classes, in this work we present a general framework for constructing non-malleable codes based on average-case hard problems for specific tampering families, and we instantiate our framework for various tampering classes including AC0\mathsf{AC}^0. (2) The locality of code is the number of codeword blocks required to be accessed in order to decode/update a single block in the underlying message. We improve efficiency and usability by studying the optimal locality of non-malleable codes. We show that locally decodable and updatable non-malleable codes cannot have constant locality. We also give a matching upper bound that improves the locality of previous constructions. (3) We investigate a stronger variant of non-malleable codes called continuous non-malleable codes, which are known to be impossible to construct without computational assumptions. We show that setup assumptions such as common reference string (CRS) are also necessary to construct this stronger primitive. We present construction of continuous non-malleable codes in CRS model from weaker computational assumptions than assumptions used in prior work
    • …
    corecore