6,816 research outputs found

    Usability and Trust in Information Systems

    Get PDF
    The need for people to protect themselves and their assets is as old as humankind. People's physical safety and their possessions have always been at risk from deliberate attack or accidental damage. The advance of information technology means that many individuals, as well as corporations, have an additional range of physical (equipment) and electronic (data) assets that are at risk. Furthermore, the increased number and types of interactions in cyberspace has enabled new forms of attack on people and their possessions. Consider grooming of minors in chat-rooms, or Nigerian email cons: minors were targeted by paedophiles before the creation of chat-rooms, and Nigerian criminals sent the same letters by physical mail or fax before there was email. But the technology has decreased the cost of many types of attacks, or the degree of risk for the attackers. At the same time, cyberspace is still new to many people, which means they do not understand risks, or recognise the signs of an attack, as readily as they might in the physical world. The IT industry has developed a plethora of security mechanisms, which could be used to mitigate risks or make attacks significantly more difficult. Currently, many people are either not aware of these mechanisms, or are unable or unwilling or to use them. Security experts have taken to portraying people as "the weakest link" in their efforts to deploy effective security [e.g. Schneier, 2000]. However, recent research has revealed at least some of the problem may be that security mechanisms are hard to use, or be ineffective. The review summarises current research on the usability of security mechanisms, and discusses options for increasing their usability and effectiveness

    Secure spontaneous emergency access to personal health record

    Get PDF
    We propose a system which enables access to the user's Personal Health Record (PHR) in the event of emergency. The access typically occurs in an ad-hoc and spontaneous manner and the user is usually unconscious, hence rendering the unavailability of the user's password to access the PHR. The proposed system includes a smart card carried by the user at all time and it is personalized with a pseudo secret, an URL to the PHR Server, a secret key shared with the PHR Server and a number of redemption tokens generated using a hash chain. In each emergency session, a one-time use redemption token is issued by the smart card, allowing the emergency doctor to retrieve the user's PHR upon successful authentication of his credentials and validation of the redemption token. The server returns the PHR encrypted with a one-time session key which can only be decrypted by the emergency doctor. The devised interaction protocol to facilitate emergency access to the user's PHR is secure and efficient

    IMPROVING SMART GRID SECURITY USING MERKLE TREES

    Get PDF
    Abstract—Presently nations worldwide are starting to convert their aging electrical power infrastructures into modern, dynamic power grids. Smart Grid offers much in the way of efficiencies and robustness to the electrical power grid, however its heavy reliance on communication networks will leave it more vulnerable to attack than present day grids. This paper looks at the threat to public key cryptography systems from a fully realized quantum computer and how this could impact the Smart Grid. We argue for the use of Merkle Trees in place of public key cryptography for authentication of devices in wireless mesh networks that are used in Smart Grid applications

    Citizen Electronic Identities using TPM 2.0

    Full text link
    Electronic Identification (eID) is becoming commonplace in several European countries. eID is typically used to authenticate to government e-services, but is also used for other services, such as public transit, e-banking, and physical security access control. Typical eID tokens take the form of physical smart cards, but successes in merging eID into phone operator SIM cards show that eID tokens integrated into a personal device can offer better usability compared to standalone tokens. At the same time, trusted hardware that enables secure storage and isolated processing of sensitive data have become commonplace both on PC platforms as well as mobile devices. Some time ago, the Trusted Computing Group (TCG) released the version 2.0 of the Trusted Platform Module (TPM) specification. We propose an eID architecture based on the new, rich authorization model introduced in the TCGs TPM 2.0. The goal of the design is to improve the overall security and usability compared to traditional smart card-based solutions. We also provide, to the best our knowledge, the first accessible description of the TPM 2.0 authorization model.Comment: This work is based on an earlier work: Citizen Electronic Identities using TPM 2.0, to appear in the Proceedings of the 4th international workshop on Trustworthy embedded devices, TrustED'14, November 3, 2014, Scottsdale, Arizona, USA, http://dx.doi.org/10.1145/2666141.266614

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures

    Ubic: Bridging the gap between digital cryptography and the physical world

    Full text link
    Advances in computing technology increasingly blur the boundary between the digital domain and the physical world. Although the research community has developed a large number of cryptographic primitives and has demonstrated their usability in all-digital communication, many of them have not yet made their way into the real world due to usability aspects. We aim to make another step towards a tighter integration of digital cryptography into real world interactions. We describe Ubic, a framework that allows users to bridge the gap between digital cryptography and the physical world. Ubic relies on head-mounted displays, like Google Glass, resource-friendly computer vision techniques as well as mathematically sound cryptographic primitives to provide users with better security and privacy guarantees. The framework covers key cryptographic primitives, such as secure identification, document verification using a novel secure physical document format, as well as content hiding. To make a contribution of practical value, we focused on making Ubic as simple, easily deployable, and user friendly as possible.Comment: In ESORICS 2014, volume 8712 of Lecture Notes in Computer Science, pp. 56-75, Wroclaw, Poland, September 7-11, 2014. Springer, Berlin, German

    A Survey of Access Control Models in Wireless Sensor Networks

    Get PDF
    Copyright 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/)Wireless sensor networks (WSNs) have attracted considerable interest in the research community, because of their wide range of applications. However, due to the distributed nature of WSNs and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. Resource constraints in sensor nodes mean that security mechanisms with a large overhead of computation and communication are impractical to use in WSNs; security in sensor networks is, therefore, a challenge. Access control is a critical security service that offers the appropriate access privileges to legitimate users and prevents illegitimate users from unauthorized access. However, access control has not received much attention in the context of WSNs. This paper provides an overview of security threats and attacks, outlines the security requirements and presents a state-of-the-art survey on access control models, including a comparison and evaluation based on their characteristics in WSNs. Potential challenging issues for access control schemes in WSNs are also discussed.Peer reviewe
    corecore