179 research outputs found

    Krein-Space Formulation of PT-Symmetry, CPT-Inner Products, and Pseudo-Hermiticity

    Get PDF
    Emphasizing the physical constraints on the formulation of a quantum theory based on the standard measurement axiom and the Schroedinger equation, we comment on some conceptual issues arising in the formulation of PT-symmetric quantum mechanics. In particular, we elaborate on the requirements of the boundedness of the metric operator and the diagonalizability of the Hamiltonian. We also provide an accessible account of a Krein-space derivation of the CPT-inner product that was widely known to mathematicians since 1950's. We show how this derivation is linked with the pseudo-Hermitian formulation of PT-symmetric quantum mechanics.Comment: published version, 17 page

    The Pauli equation with complex boundary conditions

    Full text link
    We consider one-dimensional Pauli Hamiltonians in a bounded interval with possibly non-self-adjoint Robin-type boundary conditions. We study the influence of the spin-magnetic interaction on the interplay between the type of boundary conditions and the spectrum. A special attention is paid to PT-symmetric boundary conditions with the physical choice of the time-reversal operator T.Comment: 16 pages, 4 figure

    PT-Symmetric Quantum Theory Defined in a Krein Space

    Full text link
    We provide a mathematical framework for PT-symmetric quantum theory, which is applicable irrespective of whether a system is defined on R or a complex contour, whether PT symmetry is unbroken, and so on. The linear space in which PT-symmetric quantum theory is naturally defined is a Krein space constructed by introducing an indefinite metric into a Hilbert space composed of square integrable complex functions in a complex contour. We show that in this Krein space every PT-symmetric operator is P-Hermitian if and only if it has transposition symmetry as well, from which the characteristic properties of the PT-symmetric Hamiltonians found in the literature follow. Some possible ways to construct physical theories are discussed within the restriction to the class K(H).Comment: 8 pages, no figures; Refs. added, minor revisio

    On elements of the Lax-Phillips scattering scheme for PT-symmetric operators

    Full text link
    Generalized PT-symmetric operators acting an a Hilbert space H\mathfrak{H} are defined and investigated. The case of PT-symmetric extensions of a symmetric operator SS is investigated in detail. The possible application of the Lax-Phillips scattering methods to the investigation of PT-symmetric operators is illustrated by considering the case of 0-perturbed operators

    JJ-self-adjoint operators with C\mathcal{C}-symmetries: extension theory approach

    Full text link
    A well known tool in conventional (von Neumann) quantum mechanics is the self-adjoint extension technique for symmetric operators. It is used, e.g., for the construction of Dirac-Hermitian Hamiltonians with point-interaction potentials. Here we reshape this technique to allow for the construction of pseudo-Hermitian (JJ-self-adjoint) Hamiltonians with complex point-interactions. We demonstrate that the resulting Hamiltonians are bijectively related with so called hypermaximal neutral subspaces of the defect Krein space of the symmetric operator. This symmetric operator is allowed to have arbitrary but equal deficiency indices . General properties of the $\cC$ operators for these Hamiltonians are derived. A detailed study of $\cC$-operator parametrizations and Krein type resolvent formulas is provided for $J$-self-adjoint extensions of symmetric operators with deficiency indices . The technique is exemplified on 1D pseudo-Hermitian Schr\"odinger and Dirac Hamiltonians with complex point-interaction potentials

    PTPT symmetric non-selfadjoint operators, diagonalizable and non-diagonalizable, with real discrete spectrum

    Full text link
    Consider in L2(Rd)L^2(R^d), d1d\geq 1, the operator family H(g):=H0+igWH(g):=H_0+igW. \ds H_0= a^\ast_1a_1+... +a^\ast_da_d+d/2 is the quantum harmonic oscillator with rational frequencies, WW a PP symmetric bounded potential, and gg a real coupling constant. We show that if g<ρ|g|<\rho, ρ\rho being an explicitly determined constant, the spectrum of H(g)H(g) is real and discrete. Moreover we show that the operator \ds H(g)=a^\ast_1 a_1+a^\ast_2a_2+ig a^\ast_2a_1 has real discrete spectrum but is not diagonalizable.Comment: 20 page

    Conceptual Aspects of PT-Symmetry and Pseudo-Hermiticity: A status report

    Full text link
    We survey some of the main conceptual developments in the study of PT-symmetric and pseudo-Hermitian Hamiltonian operators that have taken place during the past ten years or so. We offer a precise mathematical description of a quantum system and its representations that allows us to describe the idea of unitarization of a quantum system by modifying the inner product of the Hilbert space. We discuss the role and importance of the quantum-to-classical correspondence principle that provides the physical interpretation of the observables in quantum mechanics. Finally, we address the problem of constructing an underlying classical Hamiltonian for a unitary quantum system defined by an a priori non-Hermitian Hamiltonian.Comment: 11 page
    corecore